[PDF] Big Data In Context - eBooks Review

Big Data In Context


Big Data In Context
DOWNLOAD

Download Big Data In Context PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data In Context book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Big Data In Context


Big Data In Context
DOWNLOAD
Author : Thomas Hoeren
language : en
Publisher: Springer
Release Date : 2017-10-17

Big Data In Context written by Thomas Hoeren and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-17 with Law categories.


This book is open access under a CC BY 4.0 license. This book sheds new light on a selection of big data scenarios from an interdisciplinary perspective. It features legal, sociological and economic approaches to fundamental big data topics such as privacy, data quality and the ECJ’s Safe Harbor decision on the one hand, and practical applications such as smart cars, wearables and web tracking on the other. Addressing the interests of researchers and practitioners alike, it provides a comprehensive overview of and introduction to the emerging challenges regarding big data.All contributions are based on papers submitted in connection with ABIDA (Assessing Big Data), an interdisciplinary research project exploring the societal aspects of big data and funded by the German Federal Ministry of Education and Research.This volume was produced as a part of the ABIDA project (Assessing Big Data, 01IS15016A-F). ABIDA is a four-year collaborative project funded by the Federal Ministry of Education and Research. However the views and opinions expressed in this book reflect only the authors’ point of view and not necessarily those of all members of the ABIDA project or the Federal Ministry of Education and Research.



Big Data Analytics For Sensor Network Collected Intelligence


Big Data Analytics For Sensor Network Collected Intelligence
DOWNLOAD
Author : Hui-Huang Hsu
language : en
Publisher: Morgan Kaufmann
Release Date : 2017-02-02

Big Data Analytics For Sensor Network Collected Intelligence written by Hui-Huang Hsu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-02 with Computers categories.


Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics



Knowledge Discovery In Big Data From Astronomy And Earth Observation


Knowledge Discovery In Big Data From Astronomy And Earth Observation
DOWNLOAD
Author : Petr Skoda
language : en
Publisher: Elsevier
Release Date : 2020-04-10

Knowledge Discovery In Big Data From Astronomy And Earth Observation written by Petr Skoda and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.


Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants. - Addresses both astronomy and geosciences in parallel, from a big data perspective - Includes introductory information, key principles, applications and the latest techniques - Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields



Big Data And Learning Analytics In Higher Education


Big Data And Learning Analytics In Higher Education
DOWNLOAD
Author : Ben Kei Daniel
language : en
Publisher: Springer
Release Date : 2016-08-27

Big Data And Learning Analytics In Higher Education written by Ben Kei Daniel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-27 with Education categories.


​This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning​. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns​.



New Technologies For Human Rights Law And Practice


New Technologies For Human Rights Law And Practice
DOWNLOAD
Author : Molly K. Land
language : en
Publisher: Cambridge University Press
Release Date : 2018-04-19

New Technologies For Human Rights Law And Practice written by Molly K. Land and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-19 with Computers categories.


Provides a roadmap for understanding the relationship between technology and human rights law and practice. This title is also available as Open Access.



Context Aware Machine Learning And Mobile Data Analytics


Context Aware Machine Learning And Mobile Data Analytics
DOWNLOAD
Author : Iqbal Sarker
language : en
Publisher: Springer Nature
Release Date : 2022-01-01

Context Aware Machine Learning And Mobile Data Analytics written by Iqbal Sarker and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-01 with Computers categories.


This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.



Big Data Imperatives


Big Data Imperatives
DOWNLOAD
Author : Soumendra Mohanty
language : en
Publisher: Apress
Release Date : 2013-08-23

Big Data Imperatives written by Soumendra Mohanty and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-23 with Computers categories.


Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this bookintends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.



Big Data


Big Data
DOWNLOAD
Author : Viktor Mayer-Schonberger
language : en
Publisher: Hachette UK
Release Date : 2013-03-14

Big Data written by Viktor Mayer-Schonberger and has been published by Hachette UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Business & Economics categories.


New and expanded edition. An International Bestseller - Over One Million Copies Sold! Shortlisted for the Financial Times/Goldman Sachs Business Book of the Year Award. Since Aristotle, we have fought to understand the causes behind everything. But this ideology is fading. In the age of big data, we can crunch an incomprehensible amount of information, providing us with invaluable insights about the what rather than the why. We're just starting to reap the benefits: tracking vital signs to foresee deadly infections, predicting building fires, anticipating the best moment to buy a plane ticket, seeing inflation in real time and monitoring social media in order to identify trends. But there is a dark side to big data. Will it be machines, rather than people, that make the decisions? How do you regulate an algorithm? What will happen to privacy? Will individuals be punished for acts they have yet to commit? In this groundbreaking and fascinating book, two of the world's most-respected data experts reveal the reality of a big data world and outline clear and actionable steps that will equip the reader with the tools needed for this next phase of human evolution.



Scalable Big Data Architecture


Scalable Big Data Architecture
DOWNLOAD
Author : Bahaaldine Azarmi
language : en
Publisher: Apress
Release Date : 2015-12-31

Scalable Big Data Architecture written by Bahaaldine Azarmi and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-31 with Computers categories.


This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQLto serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools tointegrate into that pattern.



Rule Based Systems For Big Data


Rule Based Systems For Big Data
DOWNLOAD
Author : Han Liu
language : en
Publisher: Springer
Release Date : 2015-09-09

Rule Based Systems For Big Data written by Han Liu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-09 with Technology & Engineering categories.


The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.