Bimonoids For Hyperplane Arrangements

DOWNLOAD
Download Bimonoids For Hyperplane Arrangements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bimonoids For Hyperplane Arrangements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bimonoids For Hyperplane Arrangements
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: Cambridge University Press
Release Date : 2020-03-19
Bimonoids For Hyperplane Arrangements written by Marcelo Aguiar and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-19 with Mathematics categories.
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincar -Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.
Coxeter Bialgebras
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: Cambridge University Press
Release Date : 2022-11-17
Coxeter Bialgebras written by Marcelo Aguiar and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-17 with Mathematics categories.
The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.
Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2024-07-14
Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.
This text gives a comprehensive introduction to the “common core” of convex geometry. Basic concepts and tools which are present in all branches of that field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a single reference for a complete introduction to convex geometry, and the content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field and various subfields. The book is suitable as a primary text for courses in convex geometry and also in discrete geometry (including polytopes). It is also appropriate for survey type courses in Banach space theory, convex analysis, differential geometry, and applications of measure theory. Solutions to all exercises are available to instructors who adopt the text for coursework. Most chapters use the same structure with the first part presenting theory and the next containing a healthy range of exercises. Some of the exercises may even be considered as short introductions to ideas which are not covered in the theory portion. Each chapter has a notes section offering a rich narrative to accompany the theory, illuminating the development of ideas, and providing overviews to the literature concerning the covered topics. In most cases, these notes bring the reader to the research front. The text includes many figures that illustrate concepts and some parts of the proofs, enabling the reader to have a better understanding of the geometric meaning of the ideas. An appendix containing basic (and geometric) measure theory collects useful information for convex geometers.
Monoidal Functors Species And Hopf Algebras
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: American Mathematical Soc.
Release Date : 2010
Monoidal Functors Species And Hopf Algebras written by Marcelo Aguiar and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
This research monograph integrates ideas from category theory, algebra and combinatorics. It is organized in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Benabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students.
Hopf Algebras And Tensor Categories
DOWNLOAD
Author : Nicolás Andruskiewitsch
language : en
Publisher: American Mathematical Soc.
Release Date : 2013-02-21
Hopf Algebras And Tensor Categories written by Nicolás Andruskiewitsch and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-21 with Mathematics categories.
This volume contains the proceedings of the Conference on Hopf Algebras and Tensor Categories, held July 4-8, 2011, at the University of Almeria, Almeria, Spain. The articles in this volume cover a wide variety of topics related to the theory of Hopf algebras and its connections to other areas of mathematics. In particular, this volume contains a survey covering aspects of the classification of fusion categories using Morita equivalence methods, a long comprehensive introduction to Hopf algebras in the category of species, and a summary of the status to date of the classification of Hopf algebras of dimensions up to 100. Among other topics discussed in this volume are a study of normalized class sum and generalized character table for semisimple Hopf algebras, a contribution to the classification program of finite dimensional pointed Hopf algebras, relations to the conjecture of De Concini, Kac, and Procesi on representations of quantum groups at roots of unity, a categorical approach to the Drinfeld double of a braided Hopf algebra via Hopf monads, an overview of Hom-Hopf algebras, and several discussions on the crossed product construction in different settings.
Internal Categories And Quantum Groups
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher:
Release Date : 1997
Internal Categories And Quantum Groups written by Marcelo Aguiar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with categories.
Quasi Hopf Algebras
DOWNLOAD
Author : Daniel Bulacu
language : en
Publisher: Cambridge University Press
Release Date : 2019-02-21
Quasi Hopf Algebras written by Daniel Bulacu and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Mathematics categories.
This is the first book to be dedicated entirely to Drinfeld's quasi-Hopf algebras. Ideal for graduate students and researchers in mathematics and mathematical physics, this treatment is largely self-contained, taking the reader from the basics, with complete proofs, to much more advanced topics, with almost complete proofs. Many of the proofs are based on general categorical results; the same approach can then be used in the study of other Hopf-type algebras, for example Turaev or Zunino Hopf algebras, Hom-Hopf algebras, Hopfish algebras, and in general any algebra for which the category of representations is monoidal. Newcomers to the subject will appreciate the detailed introduction to (braided) monoidal categories, (co)algebras and the other tools they will need in this area. More advanced readers will benefit from having recent research gathered in one place, with open questions to inspire their own research.
Coherence In Three Dimensional Category Theory
DOWNLOAD
Author : Nick Gurski
language : en
Publisher: Cambridge University Press
Release Date : 2013-03-21
Coherence In Three Dimensional Category Theory written by Nick Gurski and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-21 with Mathematics categories.
Serves as an introduction to higher categories as well as a reference point for many key concepts in the field.
Topics In Hyperplane Arrangements
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: American Mathematical Soc.
Release Date : 2017-11-22
Topics In Hyperplane Arrangements written by Marcelo Aguiar and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.
This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.
Coxeter Groups And Hopf Algebras
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: American Mathematical Soc.
Release Date : 2006
Coxeter Groups And Hopf Algebras written by Marcelo Aguiar and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Education categories.
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.