[PDF] Biostatistics With Python - eBooks Review

Biostatistics With Python


Biostatistics With Python
DOWNLOAD

Download Biostatistics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Biostatistics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Biostatistics With Python


Biostatistics With Python
DOWNLOAD
Author : Darko Medin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-11-29

Biostatistics With Python written by Darko Medin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-29 with Computers categories.


Learn how to utilize biostatistics with Python for excelling in research and biomedical professions with practical exemplar projects Key Features Bridge the gap between biostatistics and life sciences with Python Work with practical exercises for real-world data analysis in biology and medicine Access a portfolio of exemplar projects in the domains of biomedicine, biotechnology, and biology Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThis book leverages the author’s decade-long experience in biostatistics and data science to simplify the practical use of biostatistics with Python. The chapters show you how to clean and describe your data effectively, setting a solid foundation for accurate analysis and proficiency in biostatistical inference to help you draw meaningful conclusions from your data through hypothesis testing and effect size analysis. The book walks you through predictive modeling to harness the power of Python to create robust predictive analytics that can drive your research and professional projects forward. You'll explore clinical biostatistics, learn how to design studies, conduct survival analysis, and synthesize evidence from multiple studies with meta-analysis – skills that are crucial for making informed decisions based on comprehensive data reviews. The concluding chapters will enhance your ability to analyze biological variables, enabling you to perform detailed and accurate data analysis for biological research. This book's unique blend of biostatistics and Python helps you find practical solutions that make complex concepts easy to grasp and apply. By the end of this biostatistics book, you’ll have moved from theoretical knowledge to practical experience, allowing you to perform biostatistical analysis confidently and accurately.What you will learn Get to grips with the basics of biostatistics and Python programming Clean and describe data using Python Familiarize yourself with hypothesis testing and effect size analysis Explore predictive modeling in biostatistics Understand clinical study design and survival analysis Gain a clear understanding of the meta-analysis of clinical research data Analyze biological variables with Python Discover practical data analysis for biological research Who this book is for This book is for life science professionals, researchers, biomedical professionals, and aspiring biostatisticians who want to integrate biostatistics into their work or research. A basic understanding of life sciences, biology, or medicine is recommended to fully benefit from this book.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



Python For Probability Statistics And Machine Learning


Python For Probability Statistics And Machine Learning
DOWNLOAD
Author : José Unpingco
language : en
Publisher: Springer
Release Date : 2019-06-29

Python For Probability Statistics And Machine Learning written by José Unpingco and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-29 with Technology & Engineering categories.


This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.



Think Stats


Think Stats
DOWNLOAD
Author : Allen B. Downey
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2011-07-01

Think Stats written by Allen B. Downey and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-01 with Computers categories.


If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data



Python Programming For Biology


Python Programming For Biology
DOWNLOAD
Author : Tim J. Stevens
language : en
Publisher: Cambridge University Press
Release Date : 2015-02-12

Python Programming For Biology written by Tim J. Stevens and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-12 with Computers categories.


This book introduces Python as a powerful tool for the investigation of problems in computational biology, for novices and experienced programmers alike.



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer
Release Date : 2017-02-22

Introduction To Data Science written by Laura Igual and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-22 with Computers categories.


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.



Think Bayes


Think Bayes
DOWNLOAD
Author : Allen Downey
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013-09-12

Think Bayes written by Allen Downey and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-12 with Computers categories.


If you know how to program with Python, and know a little about probability, you're ready to tackle Bayesian statistics. This book shows you how to use Python code instead of math to help you learn Bayesian fundamentals. Once you get the math out of the way, you'll be able to apply these techniques to real-world problems.



Statistical Computing With R


Statistical Computing With R
DOWNLOAD
Author : Maria L. Rizzo
language : en
Publisher: CRC Press
Release Date : 2007-11-15

Statistical Computing With R written by Maria L. Rizzo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Mathematics categories.


Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.



An Introduction To Statistics With Python


An Introduction To Statistics With Python
DOWNLOAD
Author : Thomas Haslwanter
language : en
Publisher: Springer Nature
Release Date : 2022-11-15

An Introduction To Statistics With Python written by Thomas Haslwanter and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Computers categories.


Now in its second edition, this textbook provides an introduction to Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. For this new edition, the introductory chapters on Python, data input and visualization have been reworked and updated. The chapter on experimental design has been expanded, and programs for the determination of confidence intervals commonly used in quality control have been introduced. The book also features a new chapter on finding patterns in data, including time series. A new appendix describes useful programming tools, such as testing tools, code repositories, and GUIs. The provided working code for Python solutions, together with easy-to-follow examples, will reinforce the reader’s immediate understanding of the topic. Accompanying data sets and Python programs are also available online. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis. With examples drawn mainly from the life and medical sciences, this book is intended primarily for masters and PhD students. As it provides the required statistics background, the book can also be used by anyone who wants to perform a statistical data analysis.



Python By Example


Python By Example
DOWNLOAD
Author : Nichola Lacey
language : en
Publisher: Cambridge University Press
Release Date : 2019-06-06

Python By Example written by Nichola Lacey and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-06 with Computers categories.


A refreshingly different and engaging way of learning how to program using Python. This book includes example code and brief user-friendly explanations, along with 150 progressively trickier challenges. As readers are actively involved in their learning, they quickly master the new skills and gain confidence in creating their own programs.