[PDF] Block Copolymer Self Assembly And Templating Strategies - eBooks Review

Block Copolymer Self Assembly And Templating Strategies


Block Copolymer Self Assembly And Templating Strategies
DOWNLOAD

Download Block Copolymer Self Assembly And Templating Strategies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Block Copolymer Self Assembly And Templating Strategies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Block Copolymer Self Assembly And Templating Strategies


Block Copolymer Self Assembly And Templating Strategies
DOWNLOAD
Author : Wubin Bai
language : en
Publisher:
Release Date : 2016

Block Copolymer Self Assembly And Templating Strategies written by Wubin Bai and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


Block copolymers microphase separate to form periodic patterns with period of a few nm and above without the need for lithographic guidance. These self-assembled nanostructures have a variety of bulk geometries (alternating lamellae, gyroids, cylinder or sphere arrays, tiling patterns, core-shell structures) depending on the molecular architecture of the polymer and the volume fraction of its blocks. And in thin films, surface interaction and commensurability effect influence the self-assembly and result in more diverse morphologies including hexagonal-packed perforated lamellae, square array of holes. The progress of self-assembly can be tracked in situ using Grazing Incidence Small Angle X-ray Scattering, and the annealed morphology can be revealed in 3D using TEM tomography. Moreover, non-bulk morphologies can be produced, the ordering of the microdomains can be improved and their locations directed using various templates and processing strategies. The blocks can themselves constitute a functional material, such as a photonic crystal, or they can be used as a mask to pattern other functional materials, functionalized directly by various chemical approaches, or used as a scaffold to assemble nanoparticles or other nanostructures. Block copolymers therefore offer tremendous flexibility in creating nanostructured materials with a range of applications in microelectronics, photovoltaics, filtration membranes and other devices.



Directed Self Assembly Of Nanostructured Block Copolymer Thin Films Via Dynamic Thermal Annealing


Directed Self Assembly Of Nanostructured Block Copolymer Thin Films Via Dynamic Thermal Annealing
DOWNLOAD
Author : Monali N. Basutkar
language : en
Publisher:
Release Date : 2018

Directed Self Assembly Of Nanostructured Block Copolymer Thin Films Via Dynamic Thermal Annealing written by Monali N. Basutkar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Block copolymers categories.


The aggressive miniaturization of nanoelectronic devices poses a pressing challenge in using conventional patterning technologies that are fast approaching their intrinsic resolution limits. Molecular self-assembling block copolymers (BCPs) are promising candidates for integrating and extending the current photolithographic constraints, facilitating the fabrication of next-generation nanotemplating materials via directed self-assembly. The current work focuses on the development of viable dynamic self-assembly strategies for achieving highly ordered versatile BCP nanostructures with precise feature size control and registration, as well as provides insights into the fundamentals of BCP thin film self-assembly driven by dynamic annealing fields A continuous template-free method toward rapid fabrication (2-4 minutes) of highly ordered through-thickness vertical lamellar polystyrene-block-poly(methyl methacrylate) l-PS-b-PMMA) microdomains in l-BCP films on quartz (silicon oxide) substrate was developed. A molecular relaxation induced vertical l-BCP ordering occurs under a transient macroscopic vertical strain field, imposed by a high film thermal expansion rate under sharp thermal gradient cold zone annealing (CZA-S). The high thermal gradient had to be selectively tuned with the CZA-S sweep rates for controlling the polymer chain relaxation dynamics for vertical order. Comparable conventional static thermal annealing of identical l-BCP films using vacuum oven failed to induce the desired nanostructure. Morphology evolution tracked in real time along the CZA-S thermal gradient profile using in situ grazing incidence small angle x-ray scattering (GISAXS) demonstrated four regimes of ordering: microphase separation from a quenched-disordered state (Regime 1), initial formation of vertical lamellae due to the sharp thermal gradient imposed on the l-BCP film (Regime 2), polygrain structure resulting from the broad [del] T region around Tmax (Regime 3), and an ultimate highly vertically ordered l-BCP morphology due to grain coarsening on the cooling edge (Regime 4). A detailed examination of the influence of CZA process parameters such as temperature gradient field strength ([del] T) of the thermal annealing profile, sweep velocity (v) and the corresponding annealing time (t) on the mechanism and dynamics of l-BCP ordering was performed. The complex interplay between thermodynamic equilibrium, surface and interfacial energies, confinement effects and BCP ordering kinetics was also investigated to determine the effect of BCP film attributes on morphological development. By tuning the CZA-S process dynamics with the l-BCP relaxation timescales, this process created vertical l-BCP nanodomains with controlled feature sizes via molecular weight control. Besides regulating the out-of-plane nanostructure orientation, the alignment of BCP microdomains in-plane was locally tuned by biasing the BCP assembly energetics using an edge-templating strategy. The relaxation of residual stresses and minimization of chain distortion energy penalties along the film boundary were the factors governing the edge-templating mechanism that spontaneously aligns the BCP microdomains orthogonal to the film-discontinuity. Both, kinetic and thermodynamic factors were associated with the boundary-propagation effect. This research demonstrates a new paradigm for advancement of BCP nanotemplating and nanolithography applications due to its potential to fabricate user-defined hierarchical micro-nanopatterns.



Directed Self Assembly Of Block Co Polymers For Nano Manufacturing


Directed Self Assembly Of Block Co Polymers For Nano Manufacturing
DOWNLOAD
Author : Roel Gronheid
language : en
Publisher: Woodhead Publishing
Release Date : 2015-07-17

Directed Self Assembly Of Block Co Polymers For Nano Manufacturing written by Roel Gronheid and has been published by Woodhead Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-17 with Technology & Engineering categories.


The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields



Block Copolymer Self Assembly A Computational Approach Towards Novel Morphologies


Block Copolymer Self Assembly A Computational Approach Towards Novel Morphologies
DOWNLOAD
Author : Karim Raafat Gadelrab
language : en
Publisher:
Release Date : 2019

Block Copolymer Self Assembly A Computational Approach Towards Novel Morphologies written by Karim Raafat Gadelrab and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Spontaneous self-assembly of materials is a phenomenon exhibited by different molecular systems. Among many, Block copolymers (BCPs) proved to be particularly interesting due to their ability to microphase separate into periodic domains. Nonetheless, the rising need for arbitrary, complex, 3D nanoscale morphology shows that what is commonly achievable is quite limited. Expanding the range of BCPs morphologies could be attained through the implementation of a host of strategies that could be used concurrently. Using directed self-assembly (DSA), a sphere forming BCP was assembled in a randomly displaced post template to study system resilience towards defect creation. Template shear-like distortion seemed to govern local defect generation. Defect clusters with symmetries compatible with that of the BCP showed enhanced stability. Using 44 and 32434 Archimedean tiling templates that are incompatible with BCP six-fold symmetry created low symmetry patterns with an emergent behavior dependent on pattern size and shape. A variation of DSA is studied using modulated substrates. Layer-by-layer deposition of cylinder forming BCPs was investigated. Self-consistent field theory (SCFT) and strong segregation theory SST were employed to provide the understanding and the conditions under which particular orientations of consecutive layers were produced. Furthermore, deep functionalized trenches were employed to create vertically standing high-[chi] BCP structures. Changing annealing conditions for a self-assembled lamellar structure evolved the assembled pattern to a tubular morphology that is non-native to diblock copolymers. A rather fundamental but challenging strategy to go beyond the standard motifs common to BCPs is to synthesize multiblock molecules with an expanded design space. Triblock copolymers produced bilayer perforated lamellar morphology. SCFT analysis showed a large window of stability of such structures in thin films. In addition, a model for bottlebrush BCPs (BBCPs) was constructed to investigate the characteristics of BBCPs self-assembly. Pre-stacked diblock sidechains showed improved microphase separation while providing domain spacing relevant to lithography applications. A rich phase diagram was constructed at different block concentrations. The ability to explore new strategies to discover potential equilibrium morphologies in BCPs is supported by strong numerical modeling and simulations efforts. Accelerating SCFT performance would greatly benefit BCP phase discovery. Preliminary work discussed the first attempt to Neural Network (NN) assisted SCFT. The use of NN was able to cut on the required calculations steps to reach equilibrium morphology, demonstrating accelerated calculation, and escaping trapped states, with no effect on final structure.



Self Assembly Method For Two Dimensional Mesoporous Materials A Review For Recent Progress


Self Assembly Method For Two Dimensional Mesoporous Materials A Review For Recent Progress
DOWNLOAD
Author : Danyang Feng
language : en
Publisher: OAE Publishing Inc.
Release Date : 2023-08-23

Self Assembly Method For Two Dimensional Mesoporous Materials A Review For Recent Progress written by Danyang Feng and has been published by OAE Publishing Inc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-23 with Science categories.


Two-dimensional mesoporous materials (2DMMs) refer to thin two-dimensional (2D) nanosheets with randomly dispersed or ordered mesopores, which can combine the advantages of 2D materials and mesoporous materials while overcoming their inherent drawbacks, leading to enhanced application performance. A self-assembly strategy has been recognized as a promising manufacturing method for 2DMMs with customized performance. Over the past decades, encouraging progress has been made in the development of 2DMMs via the self-assembly strategy with a variety of compositions, morphologies, mesoporous structures, and pore sizes. Here, we provide a comprehensive review on recent progress in the fabrication of 2DMMs through this strategy, focusing on the synthesis methods, including molecular self-assembly methods, single micelle assembly methods, multi-templates methods, surface-limited co-assembly methods, and template-free methods. In addition, we set out the challenges faced by 2DMMs in future research and point out potential development directions.



Amphiphilic Block Copolymers


Amphiphilic Block Copolymers
DOWNLOAD
Author : P. Alexandridis
language : en
Publisher: Elsevier
Release Date : 2000-10-18

Amphiphilic Block Copolymers written by P. Alexandridis and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-10-18 with Science categories.


It is the belief of the editors of this book that the recognition of block copolymers as being amphiphilic molecules and sharing common features with other well-studied amphiphiles will prove beneficial to both the surfactant and the polymer communities. An aim of this book is to bridge the two communities and cross-fertilise the different fields. To this end, leading researchers in the field of amphiphilic block copolymer self-assembly, some having a background in surfactant chemistry, and others with polymer physics roots, have agreed to join forces and contribute to this book.The book consists of four entities. The first part discusses theoretical considerations behind the block copolymer self-assembly in solution and in the melt. The second part provides case studies of self-assembly in different classes of block copolymers (e.g., polyethers, polyelectrolytes) and in different environments (e.g., in water, in non-aqueous solvents, or in the absence of solvents). The third part presents experimental tools, ranging from static (e.g., small angle neutron scattering) to dynamic (e.g., rheology), which can prove valuable in the characterization of block copolymer self-assemblies. The fourth part offers a sampling of current applications of block copolymers in, e.g., formulations, pharmaceutics, and separations, applications which are based on the unique self-assembly properties of block copolymers.



Self Assembly Of Block Copolymers For Nanopatterning


Self Assembly Of Block Copolymers For Nanopatterning
DOWNLOAD
Author : Nathanael Lap-Yan Wu
language : en
Publisher:
Release Date : 2014

Self Assembly Of Block Copolymers For Nanopatterning written by Nathanael Lap-Yan Wu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Block copolymers categories.


The impressive developments in the semiconductor industry over the past five decades have largely been dependent on the ability to continually reduce the dimensions of devices on a chip. However, as critical dimension requirements for these devices approach the limits of photolithography, new fabrication strategies must be introduced for these remarkable advances to continue. One technology listed by the International Technology Roadmap for Semiconductors as a candidate for next-generation nanostructure fabrication is the directed self-assembly of block copolymers. Block copolymers have received significant attention of late for their ability to template large regular arrays of nanostructures with dimensions ranging from 10 to 50 nm. The production of denser sub-10 nm nanostructures is also possible by reducing the size of these polymers, but a reduction of the polymer size also compromises the quality of nanostructures, making small polymers extremely difficult to use. In this thesis, two different patterning approaches are introduced to push the nanostructure density limits possible for a given polymer. In the first, a novel patterning approach involving thin films of bilayer block copolymer domains is used to effectively double the nanostructure density patterned by a given polymer. The technique is successfully applied to different types and sizes of polymer, and can also form highly controlled arrays of patterns with the help of surface topography. By varying different process parameters during the self-assembly or subsequent plasma steps, the dimensions of these density-doubled patterns may be finely-tuned to the desired width and pitch. The surface coverage of these density-doubled nanostructures is also maximized through adjusting the film thickness and parameters in the self-assembly process. Besides using bilayer films, dense arrays of nanostructures may also be patterned using a multi-step patterning approach. In this approach, multiple layers of block copolymer films are subsequently deposited onto the substrate to template nanostructures. Because nanostructures from previous layers contribute to the surface topography, they influence the self-assembly of successive layers and more dense and complex patterns may be produced as a result.



Selective Directed Self Assembly Of Coexisting Morphologies Using Block Copolymer Blends


Selective Directed Self Assembly Of Coexisting Morphologies Using Block Copolymer Blends
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2016

Selective Directed Self Assembly Of Coexisting Morphologies Using Block Copolymer Blends written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrasts with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.



Physical Design And Mask Synthesis For Directed Self Assembly Lithography


Physical Design And Mask Synthesis For Directed Self Assembly Lithography
DOWNLOAD
Author : Seongbo Shim
language : en
Publisher: Springer
Release Date : 2018-03-21

Physical Design And Mask Synthesis For Directed Self Assembly Lithography written by Seongbo Shim and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-21 with Technology & Engineering categories.


This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.



Breath Figures


Breath Figures
DOWNLOAD
Author : Juan Rodríguez-Hernández
language : en
Publisher: Springer Nature
Release Date : 2020-08-31

Breath Figures written by Juan Rodríguez-Hernández and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-31 with Technology & Engineering categories.


This book offers a complete and concise overview of the different strategies used to prepare microstructured surfaces employing information regarding surface instabilities and physical processes. Based upon the concept of the remarkably uniform layer of water vapor that is applied when one simply breathes onto a surface in cold temperatures, the book presents a comprehensive treatise addressing chemical and physical fundamentals, fabrication, and applications of the breath figures approach to surface wetting, coating, and modification (breath figures self-assembly) of various materials. The main topics of the book are divided into six parts: the control of surface properties in polymer blends; block copolymer design with the aim of providing order at different lengths; combination of block copolymer blends with the breath figures (BFs); dynamic templating; the breath figures method; biorecognition; and alternative approaches for surface structuring and functionalization. Discusses various physical processing methods in preparing microstructured surfaces; Describes relevant aspects of micro- and nanostructured surfaces from fabrication to final applications, including additive manufacturing, bacterial adhesion and entrapment, optical and electro-optical applications, and membrane technology; Details the breath figures approach to surface structuring while discussing alternative strategies that tie morphology to functionality of materials.