[PDF] Bootstrap Methods - eBooks Review

Bootstrap Methods


Bootstrap Methods
DOWNLOAD

Download Bootstrap Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bootstrap Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Bootstrap Methods And Their Application


Bootstrap Methods And Their Application
DOWNLOAD
Author : A. C. Davison
language : en
Publisher: Cambridge University Press
Release Date : 1997-10-28

Bootstrap Methods And Their Application written by A. C. Davison and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-10-28 with Computers categories.


Disk contains the library functions and documentation for use with Splus for Windows.



Bootstrap Methods


Bootstrap Methods
DOWNLOAD
Author : Michael R. Chernick
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-23

Bootstrap Methods written by Michael R. Chernick and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-23 with Mathematics categories.


A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.



Bootstrap Methods


Bootstrap Methods
DOWNLOAD
Author : Gerhard Dikta
language : en
Publisher: Springer Nature
Release Date : 2021-08-10

Bootstrap Methods written by Gerhard Dikta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Mathematics categories.


This book provides a compact introduction to the bootstrap method. In addition to classical results on point estimation and test theory, multivariate linear regression models and generalized linear models are covered in detail. Special attention is given to the use of bootstrap procedures to perform goodness-of-fit tests to validate model or distributional assumptions. In some cases, new methods are presented here for the first time. The text is motivated by practical examples and the implementations of the corresponding algorithms are always given directly in R in a comprehensible form. Overall, R is given great importance throughout. Each chapter includes a section of exercises and, for the more mathematically inclined readers, concludes with rigorous proofs. The intended audience is graduate students who already have a prior knowledge of probability theory and mathematical statistics.



An Introduction To Bootstrap Methods With Applications To R


An Introduction To Bootstrap Methods With Applications To R
DOWNLOAD
Author : Michael R. Chernick
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-21

An Introduction To Bootstrap Methods With Applications To R written by Michael R. Chernick and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-21 with Mathematics categories.


A comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout is on the use of bootstrap methods as an exploratory tool, including its value in variable selection and other modeling environments. The authors begin with a description of bootstrap methods and its relationship to other resampling methods, along with an overview of the wide variety of applications of the approach. Subsequent chapters offer coverage of improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems, including pharmaceutical, genomics, and economics. To inform readers on the limitations of the method, the book also exhibits counterexamples to the consistency of bootstrap methods. An introduction to R programming provides the needed preparation to work with the numerous exercises and applications presented throughout the book. A related website houses the book's R subroutines, and an extensive listing of references provides resources for further study. Discussing the topic at a remarkably practical and accessible level, An Introduction to Bootstrap Methods with Applications to R is an excellent book for introductory courses on bootstrap and resampling methods at the upper-undergraduate and graduate levels. It also serves as an insightful reference for practitioners working with data in engineering, medicine, and the social sciences who would like to acquire a basic understanding of bootstrap methods.



Resampling Methods For Dependent Data


Resampling Methods For Dependent Data
DOWNLOAD
Author : S. N. Lahiri
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Resampling Methods For Dependent Data written by S. N. Lahiri and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


This is a book on bootstrap and related resampling methods for temporal and spatial data exhibiting various forms of dependence. Like the resam pling methods for independent data, these methods provide tools for sta tistical analysis of dependent data without requiring stringent structural assumptions. This is an important aspect of the resampling methods in the dependent case, as the problem of model misspecification is more preva lent under dependence and traditional statistical methods are often very sensitive to deviations from model assumptions. Following the tremendous success of Efron's (1979) bootstrap to provide answers to many complex problems involving independent data and following Singh's (1981) example on the inadequacy of the method under dependence, there have been several attempts in the literature to extend the bootstrap method to the dependent case. A breakthrough was achieved when resampling of single observations was replaced with block resampling, an idea that was put forward by Hall (1985), Carlstein (1986), Kiinsch (1989), Liu and Singh (1992), and others in various forms and in different inference problems. There has been a vig orous development in the area of res amp ling methods for dependent data since then and it is still an area of active research. This book describes various aspects of the theory and methodology of resampling methods for dependent data developed over the last two decades. There are mainly two target audiences for the book, with the level of exposition of the relevant parts tailored to each audience.



Bootstrap Techniques For Signal Processing


Bootstrap Techniques For Signal Processing
DOWNLOAD
Author : Abdelhak M. Zoubir
language : en
Publisher: Cambridge University Press
Release Date : 2004-05-06

Bootstrap Techniques For Signal Processing written by Abdelhak M. Zoubir and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-06 with Technology & Engineering categories.


The statistical bootstrap is one of the methods that can be used to calculate estimates of a certain number of unknown parameters of a random process or a signal observed in noise, based on a random sample. Such situations are common in signal processing and the bootstrap is especially useful when only a small sample is available or an analytical analysis is too cumbersome or even impossible. This book covers the foundations of the bootstrap, its properties, its strengths and its limitations. The authors focus on bootstrap signal detection in Gaussian and non-Gaussian interference as well as bootstrap model selection. The theory developed in the book is supported by a number of useful practical examples written in MATLAB. The book is aimed at graduate students and engineers, and includes applications to real-world problems in areas such as radar and sonar, biomedical engineering and automotive engineering.



Understanding And Applying Basic Statistical Methods Using R


Understanding And Applying Basic Statistical Methods Using R
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: John Wiley & Sons
Release Date : 2016-05-10

Understanding And Applying Basic Statistical Methods Using R written by Rand R. Wilcox and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-10 with Social Science categories.


Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.



Statistical Intervals


Statistical Intervals
DOWNLOAD
Author : William Q. Meeker
language : en
Publisher: John Wiley & Sons
Release Date : 2017-03-09

Statistical Intervals written by William Q. Meeker and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-09 with Mathematics categories.


Describes statistical intervals to quantify sampling uncertainty,focusing on key application needs and recently developed methodology in an easy-to-apply format Statistical intervals provide invaluable tools for quantifying sampling uncertainty. The widely hailed first edition, published in 1991, described the use and construction of the most important statistical intervals. Particular emphasis was given to intervals—such as prediction intervals, tolerance intervals and confidence intervals on distribution quantiles—frequently needed in practice, but often neglected in introductory courses. Vastly improved computer capabilities over the past 25 years have resulted in an explosion of the tools readily available to analysts. This second edition—more than double the size of the first—adds these new methods in an easy-to-apply format. In addition to extensive updating of the original chapters, the second edition includes new chapters on: Likelihood-based statistical intervals Nonparametric bootstrap intervals Parametric bootstrap and other simulation-based intervals An introduction to Bayesian intervals Bayesian intervals for the popular binomial, Poisson and normal distributions Statistical intervals for Bayesian hierarchical models Advanced case studies, further illustrating the use of the newly described methods New technical appendices provide justification of the methods and pathways to extensions and further applications. A webpage directs readers to current readily accessible computer software and other useful information. Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition is an up-to-date working guide and reference for all who analyze data, allowing them to quantify the uncertainty in their results using statistical intervals.



Time Series Analysis Methods And Applications


Time Series Analysis Methods And Applications
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2012-05-18

Time Series Analysis Methods And Applications written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-18 with Mathematics categories.


The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas



Bootstrap Methods


Bootstrap Methods
DOWNLOAD
Author : Michael R. Chernick
language : en
Publisher: Wiley-Interscience
Release Date : 1999-09-16

Bootstrap Methods written by Michael R. Chernick and has been published by Wiley-Interscience this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-09-16 with Mathematics categories.


A comprehensive, practical treatment for professionals In less than two decades, the bootstrap has grown from an obscure object of theoretical study to a widely used resampling method with broad applications in numerous real-world situations. Bootstrap Methods: A Practitioner's Guide provides an introduction to the bootstrap for readers who have professional interest in these methods but do not have a background in advanced mathematics. It offers reliable, authoritative coverage of the bootstrap's considerable advantages as well as its drawbacks. This book updates classic texts in the field by presenting results on improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems. To alert readers to the limitations of the method, it exhibits counterexamples to the consistency of bootstrap methods. This book also makes connections between more traditional resampling methods and bootstrap. Outstanding special features of Bootstrap Methods include: * The most extensive and detailed bootstrap bibliography available, including more than 1,600 references * Discussions enlivened with stimulating topics such as data mining * Historical notes at the end of each chapter * Examples and explanations of when and why bootstrap is not effective Bootstrap Methods is a serious, useful, and unparalleled practical guide for professionals in engineering, the sciences, clinical medicine, and applied statistics.