[PDF] Bootstrapping Machine Learning - eBooks Review

Bootstrapping Machine Learning


Bootstrapping Machine Learning
DOWNLOAD

Download Bootstrapping Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bootstrapping Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Bootstrapping Machine Learning


Bootstrapping Machine Learning
DOWNLOAD
Author : Louis Dorard
language : en
Publisher: CreateSpace
Release Date : 2014-08-11

Bootstrapping Machine Learning written by Louis Dorard and has been published by CreateSpace this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-11 with Technology & Engineering categories.


In an age of overflowing data, Machine Learning and Data Science seem to be all the rage. By analyzing data, computers are able to "learn" and generalize from examples of things happening in the real world. They can make predictions and answer questions such as “How much should I price this product?” and “Which type of document is this?”.Prediction APIs are making Machine Learning accessible to everyone and this book is the first that teaches how to use them. You will learn the possibilities offered by these APIs, how to formulate your own Machine Learning problem, and what are the key concepts to grasp — not how algorithms work, so it doesn't take a university degree to understand.Learn more at http://www.louisdorard.com/machine-learning-book



Advances In Financial Machine Learning


Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-21

Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Business & Economics categories.


Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.



An Introduction To The Bootstrap


An Introduction To The Bootstrap
DOWNLOAD
Author : Bradley Efron
language : en
Publisher: CRC Press
Release Date : 1994-05-15

An Introduction To The Bootstrap written by Bradley Efron and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-05-15 with Mathematics categories.


Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.



Hands On Machine Learning With R


Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07

Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.


Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.



Bootstrap Methods And Their Application


Bootstrap Methods And Their Application
DOWNLOAD
Author : A. C. Davison
language : en
Publisher: Cambridge University Press
Release Date : 1997-10-28

Bootstrap Methods And Their Application written by A. C. Davison and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-10-28 with Computers categories.


Disk contains the library functions and documentation for use with Splus for Windows.



Python Deeper Insights Into Machine Learning


Python Deeper Insights Into Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-08-31

Python Deeper Insights Into Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-31 with Computers categories.


Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.



Bootstrap Methods


Bootstrap Methods
DOWNLOAD
Author : Gerhard Dikta
language : en
Publisher: Springer Nature
Release Date : 2021-08-10

Bootstrap Methods written by Gerhard Dikta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Mathematics categories.


This book provides a compact introduction to the bootstrap method. In addition to classical results on point estimation and test theory, multivariate linear regression models and generalized linear models are covered in detail. Special attention is given to the use of bootstrap procedures to perform goodness-of-fit tests to validate model or distributional assumptions. In some cases, new methods are presented here for the first time. The text is motivated by practical examples and the implementations of the corresponding algorithms are always given directly in R in a comprehensible form. Overall, R is given great importance throughout. Each chapter includes a section of exercises and, for the more mathematically inclined readers, concludes with rigorous proofs. The intended audience is graduate students who already have a prior knowledge of probability theory and mathematical statistics.



Bootstrapping Named Entity Annotation By Means Of Active Machine Learning


Bootstrapping Named Entity Annotation By Means Of Active Machine Learning
DOWNLOAD
Author : Fredrik Olsson
language : en
Publisher:
Release Date : 2008

Bootstrapping Named Entity Annotation By Means Of Active Machine Learning written by Fredrik Olsson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Computational linguistics categories.


On the development of a method called BootMark for bootstrapping the marking up of named entities in textual documents.



Python End To End Data Analysis


Python End To End Data Analysis
DOWNLOAD
Author : Phuong Vothihong
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-05-31

Python End To End Data Analysis written by Phuong Vothihong and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-31 with Computers categories.


Leverage the power of Python to clean, scrape, analyze, and visualize your data About This Book Clean, format, and explore your data using the popular Python libraries and get valuable insights from it Analyze big data sets; create attractive visualizations; manipulate and process various data types using NumPy, SciPy, and matplotlib; and more Packed with easy-to-follow examples to develop advanced computational skills for the analysis of complex data Who This Book Is For This course is for developers, analysts, and data scientists who want to learn data analysis from scratch. This course will provide you with a solid foundation from which to analyze data with varying complexity. A working knowledge of Python (and a strong interest in playing with your data) is recommended. What You Will Learn Understand the importance of data analysis and master its processing steps Get comfortable using Python and its associated data analysis libraries such as Pandas, NumPy, and SciPy Clean and transform your data and apply advanced statistical analysis to create attractive visualizations Analyze images and time series data Mine text and analyze social networks Perform web scraping and work with different databases, Hadoop, and Spark Use statistical models to discover patterns in data Detect similarities and differences in data with clustering Work with Jupyter Notebook to produce publication-ready figures to be included in reports In Detail Data analysis is the process of applying logical and analytical reasoning to study each component of data present in the system. Python is a multi-domain, high-level, programming language that offers a range of tools and libraries suitable for all purposes, it has slowly evolved as one of the primary languages for data science. Have you ever imagined becoming an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? If yes, look no further, this is the course you need! In this course, we will get you started with Python data analysis by introducing the basics of data analysis and supported Python libraries such as matplotlib, NumPy, and pandas. Create visualizations by choosing color maps, different shapes, sizes, and palettes then delve into statistical data analysis using distribution algorithms and correlations. You'll then find your way around different data and numerical problems, get to grips with Spark and HDFS, and set up migration scripts for web mining. You'll be able to quickly and accurately perform hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. Finally, you will delve into advanced techniques such as performing regression, quantifying cause and effect using Bayesian methods, and discovering how to use Python's tools for supervised machine learning. The course provides you with highly practical content explaining data analysis with Python, from the following Packt books: Getting Started with Python Data Analysis. Python Data Analysis Cookbook. Mastering Python Data Analysis. By the end of this course, you will have all the knowledge you need to analyze your data with varying complexity levels, and turn it into actionable insights. Style and approach Learn Python data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. It offers you a useful way of analyzing the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of data analysis.



Machine Learning


Machine Learning
DOWNLOAD
Author : Satheesh Prabhu Gurusamy , Anil Kumar Veeramachaneni
language : en
Publisher: RK Publication
Release Date : 2025-06-14

Machine Learning written by Satheesh Prabhu Gurusamy , Anil Kumar Veeramachaneni and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-14 with Computers categories.


This book offers a comprehensive introduction to Machine Learning, covering essential algorithms, data preprocessing, model evaluation, and real-world applications. It bridges theoretical concepts with practical implementations, making it ideal for students, researchers, and professionals aiming to harness the power of intelligent systems in diverse fields.