[PDF] Boundary Value Problems For Systems Of Linear Functional Differential Equations - eBooks Review

Boundary Value Problems For Systems Of Linear Functional Differential Equations


Boundary Value Problems For Systems Of Linear Functional Differential Equations
DOWNLOAD

Download Boundary Value Problems For Systems Of Linear Functional Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Boundary Value Problems For Systems Of Linear Functional Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Boundary Value Problems For Systems Of Linear Functional Differential Equations


Boundary Value Problems For Systems Of Linear Functional Differential Equations
DOWNLOAD
Author : Ivan Kiguradze
language : en
Publisher:
Release Date : 2003

Boundary Value Problems For Systems Of Linear Functional Differential Equations written by Ivan Kiguradze and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Boundary value problems categories.




Nonoscillation Theory Of Functional Differential Equations With Applications


Nonoscillation Theory Of Functional Differential Equations With Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-04-23

Nonoscillation Theory Of Functional Differential Equations With Applications written by Ravi P. Agarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-23 with Mathematics categories.


This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​



Boundary Value Problems For Functional Differential Equations


Boundary Value Problems For Functional Differential Equations
DOWNLOAD
Author : Johnny L Henderson
language : en
Publisher: World Scientific
Release Date : 1995-10-12

Boundary Value Problems For Functional Differential Equations written by Johnny L Henderson and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-10-12 with Mathematics categories.


Functional differential equations have received attention since the 1920's. Within that development, boundary value problems have played a prominent role in both the theory and applications dating back to the 1960's. This book attempts to present some of the more recent developments from a cross-section of views on boundary value problems for functional differential equations.Contributions represent not only a flavor of classical results involving, for example, linear methods and oscillation-nonoscillation techiques, but also modern nonlinear methods for problems involving stability and control as well as cone theoretic, degree theoretic, and topological transversality strategies. A balance with applications is provided through a number of papers dealing with a pendulum with dry friction, heat conduction in a thin stretched resistance wire, problems involving singularities, impulsive systems, traveling waves, climate modeling, and economic control.With the importance of boundary value problems for functional differential equations in applications, it is not surprising that as new applications arise, modifications are required for even the definitions of the basic equations. This is the case for some of the papers contributed by the Perm seminar participants. Also, some contributions are devoted to delay Fredholm integral equations, while a few papers deal with what might be termed as boundary value problems for delay-difference equations.



Applied Theory Of Functional Differential Equations


Applied Theory Of Functional Differential Equations
DOWNLOAD
Author : V. Kolmanovskii
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Applied Theory Of Functional Differential Equations written by V. Kolmanovskii and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.



Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations


Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations
DOWNLOAD
Author : Uri M. Ascher
language : en
Publisher: SIAM
Release Date : 1988-01-01

Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations written by Uri M. Ascher and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-01-01 with Mathematics categories.


This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.



Introduction To The Theory Of Functional Differential Equations Methods And Applications


Introduction To The Theory Of Functional Differential Equations Methods And Applications
DOWNLOAD
Author : Nikolaj Viktorovič Azbelev
language : en
Publisher: Hindawi Publishing Corporation
Release Date : 2007

Introduction To The Theory Of Functional Differential Equations Methods And Applications written by Nikolaj Viktorovič Azbelev and has been published by Hindawi Publishing Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Electronic books categories.




Theory Of Functional Differential Equations


Theory Of Functional Differential Equations
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Theory Of Functional Differential Equations written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.



Linear Functional Equations Operator Approach


Linear Functional Equations Operator Approach
DOWNLOAD
Author : Anatolij Antonevich
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Linear Functional Equations Operator Approach written by Anatolij Antonevich and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In this book we shall study linear functional equations of the form m bu(x) == Lak(X)U(Qk(X)) = f(x), (1) k=l where U is an unknown function from a given space F(X) of functions on a set X, Qk: X -+ X are given mappings, ak and f are given functions. Our approach is based on the investigation of the operators given by the left-hand side of equa tion (1). In what follows such operators will be called functional operators. We will pay special attention to the spectral properties of functional operators, first of all, to invertibility and the Noether property. Since the set X, the space F(X), the mappings Qk and the coefficients ak are arbitrary, the class of operators of the form (1) is very rich and some of its individ ual representatives are related with problems arising in various areas of mathemat ics and its applications. In addition to the classical theory of functional equations, among such areas one can indicate the theory of functional-differential equations with deviating argument, the theory of nonlocal problems for partial differential equations, the theory of boundary value problems for the equation of a vibrating string and equations of mixed type, a number of problems of the general theory of operator algebras and the theory of dynamical systems, the spectral theory of au tomorphisms of Banach algebras, and other problems.



Lectures On Partial Differential Equations


Lectures On Partial Differential Equations
DOWNLOAD
Author : Vladimir I. Arnold
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Lectures On Partial Differential Equations written by Vladimir I. Arnold and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


Choice Outstanding Title! (January 2006) Like all of Vladimir Arnold's books, this book is full of geometric insight. Arnold illustrates every principle with a figure. This book aims to cover the most basic parts of the subject and confines itself largely to the Cauchy and Neumann problems for the classical linear equations of mathematical physics, especially Laplace's equation and the wave equation, although the heat equation and the Korteweg-de Vries equation are also discussed. Physical intuition is emphasized. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.



Introduction To Functional Differential Equations


Introduction To Functional Differential Equations
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21

Introduction To Functional Differential Equations written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.


The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constantsformula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .