Boundary Value Problems On Time Scales Volume I

DOWNLOAD
Download Boundary Value Problems On Time Scales Volume I PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Boundary Value Problems On Time Scales Volume I book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Boundary Value Problems On Time Scales Volume I
DOWNLOAD
Author : Svetlin Georgiev
language : en
Publisher: CRC Press
Release Date : 2021-10-14
Boundary Value Problems On Time Scales Volume I written by Svetlin Georgiev and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-14 with Mathematics categories.
Boundary Value Problems on Time Scales, Volume I is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press. Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models. The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating processes and the phenomena subject to short-time perturbations during their evolution. The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. AUTHORS Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.
Boundary Value Problems On Time Scales Volume Ii
DOWNLOAD
Author : Svetlin Georgiev
language : en
Publisher: CRC Press
Release Date : 2021-10-14
Boundary Value Problems On Time Scales Volume Ii written by Svetlin Georgiev and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-14 with Mathematics categories.
Boundary Value Problems on Time Scales, Volume II is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press. Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models. The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating processes and the phenomena subject to short-time perturbations during their evolution. The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. AUTHORS Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.
Advances In Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-12-06
Advances In Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-12-06 with Mathematics categories.
Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.
Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-06-15
Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-15 with Language Arts & Disciplines categories.
The study of dynamic equations on a measure chain (time scale) goes back to its founder S. Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on measure chains can build bridges between continuous and discrete mathematics. Further, the study of measure chain theory has led to several important applications, e.g., in the study of insect population models, neural networks, heat transfer, and epidemic models. Key features of the book: * Introduction to measure chain theory; discussion of its usefulness in allowing for the simultaneous development of differential equations and difference equations without having to repeat analogous proofs * Many classical formulas or procedures for differential and difference equations cast in a new light * New analogues of many of the "special functions" studied * Examination of the properties of the "exponential function" on time scales, which can be defined and investigated using a particularly simple linear equation * Additional topics covered: self-adjoint equations, linear systems, higher order equations, dynamic inequalities, and symplectic dynamic systems * Clear, motivated exposition, beginning with preliminaries and progressing to more sophisticated text * Ample examples and exercises throughout the book * Solutions to selected problems Requiring only a first semester of calculus and linear algebra, Dynamic Equations on Time Scales may be considered as an interesting approach to differential equations via exposure to continuous and discrete analysis. This approach provides an early encounter with many applications in such areas as biology, physics, and engineering. Parts of the book may be used in a special topics seminar at the senior undergraduate or beginning graduate levels. Finally, the work may
Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
Boundary Value Problems For Analytic Functions
DOWNLOAD
Author : Jian-Ke Lu
language : en
Publisher: World Scientific
Release Date : 1993
Boundary Value Problems For Analytic Functions written by Jian-Ke Lu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.
This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.
Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-01-01
Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Advances In Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-28
Advances In Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-28 with Mathematics categories.
The development of time scales is still in its infancy, yet as inroads are made, interest is gathering steam. Of a great deal of interest are methods being intro duced for dynamic equations on time scales, which now explain some discrepancies that have been encountered when results for differential equations and their dis crete counterparts have been independently considered. The explanations of these seeming discrepancies are incidentally producing unifying results via time scales methods. The study of dynamic equations on time scales is a fairly new subject, and research in this area is rapidly growing. It has been created in order to unify continuous and discrete analysis, and it allows a simultaneous treatment of dif ferential and difference equations, extending those theories to so-called dynamic equations. An introduction to this subject is given in Dynamic Equations on Time Scales: An Introduction with Applications (MARTIN BOHNER and ALLAN PETER SON, Birkhauser, 2001 [86]). The current book is designed to supplement this introduction and to offer access to the vast literature that has already emerged in this field. It consists of ten chapters, written by an international team of 21 experts in their areas, thus providing an overview of the recent advances in the theory on time scales. We want to emphasize here that this book is not just a collection of papers by different authors.
Methods And Applications Of Singular Perturbations
DOWNLOAD
Author : Ferdinand Verhulst
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-06-04
Methods And Applications Of Singular Perturbations written by Ferdinand Verhulst and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-04 with Mathematics categories.
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Computational Models Volume I
DOWNLOAD
Author : Shaidurov Vladimir Viktorovich
language : en
Publisher: EOLSS Publications
Release Date : 2009-04-10
Computational Models Volume I written by Shaidurov Vladimir Viktorovich and has been published by EOLSS Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-10 with categories.
Computational Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Modern Computational Mathematics arises in a wide variety of fields, including business, economics, engineering, finance, medicine and science. The Theme on Computational Models provides the essential aspects of Computational Mathematics emphasizing Basic Methods for Solving Equations; Numerical Analysis and Methods for Ordinary Differential Equations; Numerical Methods and Algorithms; Computational Methods and Algorithms; Numerical Models and Simulation. These two volumes are aimed at those seeking in-depth of advanced knowledge: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.