[PDF] Building Recommender Systems With Machine Learning And Ai - eBooks Review

Building Recommender Systems With Machine Learning And Ai


Building Recommender Systems With Machine Learning And Ai
DOWNLOAD

Download Building Recommender Systems With Machine Learning And Ai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Recommender Systems With Machine Learning And Ai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Building Recommender Systems With Machine Learning And Ai


Building Recommender Systems With Machine Learning And Ai
DOWNLOAD
Author : Frank Kane
language : en
Publisher:
Release Date : 2018

Building Recommender Systems With Machine Learning And Ai written by Frank Kane and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


Automated recommendations are everywhere: Netflix, Amazon, YouTube, and more. Recommender systems learn about your unique interests and show the products or content they think you'll like best. Discover how to build your own recommender systems from one of the pioneers in the field. Frank Kane spent over nine years at Amazon, where he led the development of many of the company's personalized product recommendation technologies. In this course, he covers recommendation algorithms based on neighborhood-based collaborative filtering and more modern techniques, including matrix factorization and even deep learning with artificial neural networks. Along the way, you can learn from Frank's extensive industry experience and understand the real-world challenges of applying these algorithms at a large scale with real-world data. You can also go hands-on, developing your own framework to test algorithms and building your own neural networks using technologies like Amazon DSSTNE, AWS SageMaker, and TensorFlow.



Building Recommender Systems With Machine Learning And Ai Help People Discover New Products And Content With Deep Learning Neural Networks And Mach


Building Recommender Systems With Machine Learning And Ai Help People Discover New Products And Content With Deep Learning Neural Networks And Mach
DOWNLOAD
Author : Frank Kane
language : en
Publisher:
Release Date : 2018-08-11

Building Recommender Systems With Machine Learning And Ai Help People Discover New Products And Content With Deep Learning Neural Networks And Mach written by Frank Kane and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-11 with Computers categories.


Learn how to build recommender systems from one of Amazon's pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon's personalized product recommendation technologies.You've seen automated recommendations everywhere - on Netflix's home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you'll become very valuable to them.This book is adapted from Frank's popular online course published by Sundog Education, so you can expect lots of visual aids from its slides and a conversational, accessible tone throughout the book. The graphics and scripts from over 300 slides are included, and you'll have access to all of the source code associated with it as well.We'll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you'll learn from Frank's extensive industry experience to understand the real-world challenges you'll encounter when applying these algorithms at large scale and with real-world data.This book is very hands-on; you'll develop your own framework for evaluating and combining many different recommendation algorithms together, and you'll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people. We'll cover: -Building a recommendation engine-Evaluating recommender systems-Content-based filtering using item attributes-Neighborhood-based collaborative filtering with user-based, item-based, and KNN CF-Model-based methods including matrix factorization and SVD-Applying deep learning, AI, and artificial neural networks to recommendations-Session-based recommendations with recursive neural networks-Scaling to massive data sets with Apache Spark machine learning, Amazon DSSTNE deep learning, and AWS SageMaker with factorization machines-Real-world challenges and solutions with recommender systems-Case studies from YouTube and Netflix-Building hybrid, ensemble recommendersThis comprehensive book takes you all the way from the early days of collaborative filtering, to bleeding-edge applications of deep neural networks and modern machine learning techniques for recommending the best items to every individual user.The coding exercises for this book use the Python programming language. We include an intro to Python if you're new to it, but you'll need some prior programming experience in order to use this book successfully. We also include a short introduction to deep learning, Tensorfow, and Keras if you are new to the field of artificial intelligence, but you'll need to be able to understand new computer algorithms.Dive in, and learn about one of the most interesting and lucrative applications of machine learning and deep learning there is!



Building A Recommendation System With R


Building A Recommendation System With R
DOWNLOAD
Author : Suresh K. Gorakala
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-29

Building A Recommendation System With R written by Suresh K. Gorakala and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-29 with Computers categories.


Learn the art of building robust and powerful recommendation engines using R About This Book Learn to exploit various data mining techniques Understand some of the most popular recommendation techniques This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines Who This Book Is For If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you. What You Will Learn Get to grips with the most important branches of recommendation Understand various data processing and data mining techniques Evaluate and optimize the recommendation algorithms Prepare and structure the data before building models Discover different recommender systems along with their implementation in R Explore various evaluation techniques used in recommender systems Get to know about recommenderlab, an R package, and understand how to optimize it to build efficient recommendation systems In Detail A recommendation system performs extensive data analysis in order to generate suggestions to its users about what might interest them. R has recently become one of the most popular programming languages for the data analysis. Its structure allows you to interactively explore the data and its modules contain the most cutting-edge techniques thanks to its wide international community. This distinctive feature of the R language makes it a preferred choice for developers who are looking to build recommendation systems. The book will help you understand how to build recommender systems using R. It starts off by explaining the basics of data mining and machine learning. Next, you will be familiarized with how to build and optimize recommender models using R. Following that, you will be given an overview of the most popular recommendation techniques. Finally, you will learn to implement all the concepts you have learned throughout the book to build a recommender system. Style and approach This is a step-by-step guide that will take you through a series of core tasks. Every task is explained in detail with the help of practical examples.



Practical Recommender Systems


Practical Recommender Systems
DOWNLOAD
Author : Kim Falk
language : en
Publisher: Simon and Schuster
Release Date : 2019-01-18

Practical Recommender Systems written by Kim Falk and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-18 with Computers categories.


Summary Online recommender systems help users find movies, jobs, restaurants-even romance! There's an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors. About the Book Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you'll see how to collect user data and produce personalized recommendations. You'll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you'll encounter as your site grows. What's inside How to collect and understand user behavior Collaborative and content-based filtering Machine learning algorithms Real-world examples in Python About the Reader Readers need intermediate programming and database skills. About the Author Kim Falk is an experienced data scientist who works daily with machine learning and recommender systems. Table of Contents PART 1 - GETTING READY FOR RECOMMENDER SYSTEMS What is a recommender? User behavior and how to collect it Monitoring the system Ratings and how to calculate them Non-personalized recommendations The user (and content) who came in from the cold PART 2 - RECOMMENDER ALGORITHMS Finding similarities among users and among content Collaborative filtering in the neighborhood Evaluating and testing your recommender Content-based filtering Finding hidden genres with matrix factorization Taking the best of all algorithms: implementing hybrid recommenders Ranking and learning to rank Future of recommender systems



Building Intelligent Systems


Building Intelligent Systems
DOWNLOAD
Author : Geoff Hulten
language : en
Publisher: Apress
Release Date : 2018-03-06

Building Intelligent Systems written by Geoff Hulten and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-06 with Computers categories.


Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems



Machine Learning Make Your Own Recommender System


Machine Learning Make Your Own Recommender System
DOWNLOAD
Author : Oliver Theobald
language : en
Publisher: Machine Learning for Beginners
Release Date : 2018-10-06

Machine Learning Make Your Own Recommender System written by Oliver Theobald and has been published by Machine Learning for Beginners this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-06 with Computers categories.


Learn How to Make Your Own Recommender System in an Afternoon.Recommender systems are one of the most visible applications of machine learning and data mining today and their uncanny ability to convert our unspoken actions into items we desire is both addicting and concerning. And whether recommender systems excite or scare you, the best way to manage their influence and impact is to understand the architecture and algorithms that play on your personal data. Recommender systems are here to stay and for anyone beginning their journey in data science, this is a lucrative space for future employment.This book will get you up and running with the basics as well as the steps to coding your own recommender system. Exercises include predicting book recommendations, relevant house properties for online marketing purposes, and whether a user will click on an ad campaign. The contents of this book is designed for beginners with some background knowledge of data science, including classical statistics and computing programming. If this is your first exposure to data science, you may want to spend a few hours to read my first book Machine Learning for Absolute Beginners before you get started here.Topics covered in this book: Setting Up A Sandbox Environment With Jupyter NotebookWorking With DataData ReductionBuilding a Collaborative Filtering ModelBuilding a Content-Based Filtering ModelEvaluationPrivacy & EthicsFuture of Recommender SystemsPlease feel welcome to join this introductory course by buying a copy or sending a free sample to your preferred device.



R Machine Learning Projects


R Machine Learning Projects
DOWNLOAD
Author : Dr. Sunil Kumar Chinnamgari
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-14

R Machine Learning Projects written by Dr. Sunil Kumar Chinnamgari and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-14 with Mathematics categories.


Master a range of machine learning domains with real-world projects using TensorFlow for R, H2O, MXNet, and more Key FeaturesMaster machine learning, deep learning, and predictive modeling concepts in R 3.5Build intelligent end-to-end projects for finance, retail, social media, and a variety of domainsImplement smart cognitive models with helpful tips and best practicesBook Description R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations. What you will learnExplore deep neural networks and various frameworks that can be used in RDevelop a joke recommendation engine to recommend jokes that match users’ tastesCreate powerful ML models with ensembles to predict employee attritionBuild autoencoders for credit card fraud detectionWork with image recognition and convolutional neural networks Make predictions for casino slot machine using reinforcement learningImplement NLP techniques for sentiment analysis and customer segmentationWho this book is for If you’re a data analyst, data scientist, or machine learning developer who wants to master machine learning concepts using R by building real-world projects, this is the book for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this book.



Building Recommender Systems With Machine Learning And Ai


Building Recommender Systems With Machine Learning And Ai
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2019

Building Recommender Systems With Machine Learning And Ai written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Learn how to build recommender systems and help people discover new products and content with deep learning, neural networks, and machine learning recommendations.



Approaching Almost Any Machine Learning Problem


Approaching Almost Any Machine Learning Problem
DOWNLOAD
Author : Abhishek Thakur
language : en
Publisher: Abhishek Thakur
Release Date : 2020-07-04

Approaching Almost Any Machine Learning Problem written by Abhishek Thakur and has been published by Abhishek Thakur this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-04 with Computers categories.


This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub