Machine Learning Make Your Own Recommender System

DOWNLOAD
Download Machine Learning Make Your Own Recommender System PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Make Your Own Recommender System book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning Make Your Own Recommender System
DOWNLOAD
Author : Oliver Theobald
language : en
Publisher: Machine Learning for Beginners
Release Date : 2018-10-06
Machine Learning Make Your Own Recommender System written by Oliver Theobald and has been published by Machine Learning for Beginners this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-06 with Computers categories.
Learn How to Make Your Own Recommender System in an Afternoon.Recommender systems are one of the most visible applications of machine learning and data mining today and their uncanny ability to convert our unspoken actions into items we desire is both addicting and concerning. And whether recommender systems excite or scare you, the best way to manage their influence and impact is to understand the architecture and algorithms that play on your personal data. Recommender systems are here to stay and for anyone beginning their journey in data science, this is a lucrative space for future employment.This book will get you up and running with the basics as well as the steps to coding your own recommender system. Exercises include predicting book recommendations, relevant house properties for online marketing purposes, and whether a user will click on an ad campaign. The contents of this book is designed for beginners with some background knowledge of data science, including classical statistics and computing programming. If this is your first exposure to data science, you may want to spend a few hours to read my first book Machine Learning for Absolute Beginners before you get started here.Topics covered in this book: Setting Up A Sandbox Environment With Jupyter NotebookWorking With DataData ReductionBuilding a Collaborative Filtering ModelBuilding a Content-Based Filtering ModelEvaluationPrivacy & EthicsFuture of Recommender SystemsPlease feel welcome to join this introductory course by buying a copy or sending a free sample to your preferred device.
Machine Learning Make Your Own Recommender System
DOWNLOAD
Author : Oliver Theobald
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-03-19
Machine Learning Make Your Own Recommender System written by Oliver Theobald and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-19 with Computers categories.
Launch into machine learning with our course and learn to create advanced recommender systems, ensuring ethical use and maximizing user satisfaction. Key Features Navigate Scikit-Learn effortlessly Create advanced recommender systems Understand ethical AI development Book Description With an introductory overview, the course prepares you for a deep dive into the practical application of Scikit-Learn and the datasets that bring theories to life. From the basics of machine learning to the intricate details of setting up a sandbox environment, this course covers the essential groundwork for any aspiring data scientist. The course focuses on developing your skills in working with data, implementing data reduction techniques, and understanding the intricacies of item-based and user-based collaborative filtering, along with content-based filtering. These core methodologies are crucial for creating accurate and efficient recommender systems that cater to the unique preferences of users. Practical examples and evaluations further solidify your learning, making complex concepts accessible and manageable. The course wraps up by addressing the critical topics of privacy, ethics in machine learning, and the exciting future of recommender systems. This holistic approach ensures that you not only gain technical proficiency but also consider the broader implications of your work in this field. With a final look at further resources, your journey into machine learning and recommender systems is just beginning, armed with the knowledge and tools to explore new horizons. What will you learn Build data-driven recommender systems Implement collaborative filtering techniques Apply content-based filtering methods Evaluate recommender system performance Address privacy and ethical considerations Anticipate future recommender system trends Who this book is for This course is ideal for aspiring data scientists and technical professionals with a basic understanding of Python programming and a keen interest in machine learning. This course lays the groundwork for those looking to specialize in building sophisticated recommender systems.
Building Recommender Systems With Machine Learning And Ai
DOWNLOAD
Author : Frank Kane
language : en
Publisher:
Release Date : 2018
Building Recommender Systems With Machine Learning And Ai written by Frank Kane and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Automated recommendations are everywhere: Netflix, Amazon, YouTube, and more. Recommender systems learn about your unique interests and show the products or content they think you'll like best. Discover how to build your own recommender systems from one of the pioneers in the field. Frank Kane spent over nine years at Amazon, where he led the development of many of the company's personalized product recommendation technologies. In this course, he covers recommendation algorithms based on neighborhood-based collaborative filtering and more modern techniques, including matrix factorization and even deep learning with artificial neural networks. Along the way, you can learn from Frank's extensive industry experience and understand the real-world challenges of applying these algorithms at a large scale with real-world data. You can also go hands-on, developing your own framework to test algorithms and building your own neural networks using technologies like Amazon DSSTNE, AWS SageMaker, and TensorFlow.
Practical Recommender Systems
DOWNLOAD
Author : Kim Falk
language : en
Publisher: Simon and Schuster
Release Date : 2019-01-18
Practical Recommender Systems written by Kim Falk and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-18 with Computers categories.
Summary Online recommender systems help users find movies, jobs, restaurants-even romance! There's an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors. About the Book Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you'll see how to collect user data and produce personalized recommendations. You'll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you'll encounter as your site grows. What's inside How to collect and understand user behavior Collaborative and content-based filtering Machine learning algorithms Real-world examples in Python About the Reader Readers need intermediate programming and database skills. About the Author Kim Falk is an experienced data scientist who works daily with machine learning and recommender systems. Table of Contents PART 1 - GETTING READY FOR RECOMMENDER SYSTEMS What is a recommender? User behavior and how to collect it Monitoring the system Ratings and how to calculate them Non-personalized recommendations The user (and content) who came in from the cold PART 2 - RECOMMENDER ALGORITHMS Finding similarities among users and among content Collaborative filtering in the neighborhood Evaluating and testing your recommender Content-based filtering Finding hidden genres with matrix factorization Taking the best of all algorithms: implementing hybrid recommenders Ranking and learning to rank Future of recommender systems
Recommender System With Machine Learning And Artificial Intelligence
DOWNLOAD
Author : Sachi Nandan Mohanty
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-09
Recommender System With Machine Learning And Artificial Intelligence written by Sachi Nandan Mohanty and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-09 with Computers categories.
This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.
Recommender Systems Advanced Developments
DOWNLOAD
Author : Jie Lu
language : en
Publisher: World Scientific
Release Date : 2020-08-04
Recommender Systems Advanced Developments written by Jie Lu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-04 with Computers categories.
Recommender systems provide users (businesses or individuals) with personalized online recommendations of products or information, to address the problem of information overload and improve personalized services. Recent successful applications of recommender systems are providing solutions to transform online services for e-government, e-business, e-commerce, e-shopping, e-library, e-learning, e-tourism, and more.This unique compendium not only describes theoretical research but also reports on new application developments, prototypes, and real-world case studies of recommender systems. The comprehensive volume provides readers with a timely snapshot of how new recommendation methods and algorithms can overcome challenging issues. Furthermore, the monograph systematically presents three dimensions of recommender systems — basic recommender system concepts, advanced recommender system methods, and real-world recommender system applications.By providing state-of-the-art knowledge, this excellent reference text will immensely benefit researchers, managers, and professionals in business, government, and education to understand the concepts, methods, algorithms and application developments in recommender systems.
Recommender Systems
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2016-03-28
Recommender Systems written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-28 with Computers categories.
This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.
Approaching Almost Any Machine Learning Problem
DOWNLOAD
Author : Abhishek Thakur
language : en
Publisher: Abhishek Thakur
Release Date : 2020-07-04
Approaching Almost Any Machine Learning Problem written by Abhishek Thakur and has been published by Abhishek Thakur this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-04 with Computers categories.
This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub
Building A Recommendation System With R
DOWNLOAD
Author : Suresh K. Gorakala
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-29
Building A Recommendation System With R written by Suresh K. Gorakala and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-29 with Computers categories.
Learn the art of building robust and powerful recommendation engines using R About This Book Learn to exploit various data mining techniques Understand some of the most popular recommendation techniques This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines Who This Book Is For If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you. What You Will Learn Get to grips with the most important branches of recommendation Understand various data processing and data mining techniques Evaluate and optimize the recommendation algorithms Prepare and structure the data before building models Discover different recommender systems along with their implementation in R Explore various evaluation techniques used in recommender systems Get to know about recommenderlab, an R package, and understand how to optimize it to build efficient recommendation systems In Detail A recommendation system performs extensive data analysis in order to generate suggestions to its users about what might interest them. R has recently become one of the most popular programming languages for the data analysis. Its structure allows you to interactively explore the data and its modules contain the most cutting-edge techniques thanks to its wide international community. This distinctive feature of the R language makes it a preferred choice for developers who are looking to build recommendation systems. The book will help you understand how to build recommender systems using R. It starts off by explaining the basics of data mining and machine learning. Next, you will be familiarized with how to build and optimize recommender models using R. Following that, you will be given an overview of the most popular recommendation techniques. Finally, you will learn to implement all the concepts you have learned throughout the book to build a recommender system. Style and approach This is a step-by-step guide that will take you through a series of core tasks. Every task is explained in detail with the help of practical examples.