Cell Complexes Poset Topology And The Representation Theory Of Algebras Arising In Algebraic Combinatorics And Discrete Geometry

DOWNLOAD
Download Cell Complexes Poset Topology And The Representation Theory Of Algebras Arising In Algebraic Combinatorics And Discrete Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cell Complexes Poset Topology And The Representation Theory Of Algebras Arising In Algebraic Combinatorics And Discrete Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Cell Complexes Poset Topology And The Representation Theory Of Algebras Arising In Algebraic Combinatorics And Discrete Geometry
DOWNLOAD
Author : Stuart Margolis
language : en
Publisher: American Mathematical Society
Release Date : 2021-12-30
Cell Complexes Poset Topology And The Representation Theory Of Algebras Arising In Algebraic Combinatorics And Discrete Geometry written by Stuart Margolis and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-30 with Mathematics categories.
View the abstract.
Representation Theory Of Finite Monoids
DOWNLOAD
Author : Benjamin Steinberg
language : en
Publisher: Springer
Release Date : 2016-12-09
Representation Theory Of Finite Monoids written by Benjamin Steinberg and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-09 with Mathematics categories.
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.
Topics In Hyperplane Arrangements
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: American Mathematical Soc.
Release Date : 2017-11-22
Topics In Hyperplane Arrangements written by Marcelo Aguiar and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.
This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.
Bimonoids For Hyperplane Arrangements
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: Cambridge University Press
Release Date : 2020-03-19
Bimonoids For Hyperplane Arrangements written by Marcelo Aguiar and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-19 with Mathematics categories.
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincar -Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.
Combinatorial Algebraic Topology
DOWNLOAD
Author : Dimitry Kozlov
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-24
Combinatorial Algebraic Topology written by Dimitry Kozlov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-24 with Mathematics categories.
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Coxeter Groups And Hopf Algebras
DOWNLOAD
Author : Marcelo Aguiar
language : en
Publisher: American Mathematical Soc.
Release Date : 2006
Coxeter Groups And Hopf Algebras written by Marcelo Aguiar and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Education categories.
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.
The Geometry And Topology Of Coxeter Groups
DOWNLOAD
Author : Michael Davis
language : en
Publisher: Princeton University Press
Release Date : 2008
The Geometry And Topology Of Coxeter Groups written by Michael Davis and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Using The Borsuk Ulam Theorem
DOWNLOAD
Author : Jiri Matousek
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-04-17
Using The Borsuk Ulam Theorem written by Jiri Matousek and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-04-17 with Computers categories.
"The textbook explains elementary but powerful topological methods based on the Borsuk-Ulam theorem and its generalizations. It covers many substantial results, sometimes with proofs simpler than those in the original papers. At the same time, it assumes no prior knowledge of algebraic topology, and all the required topological notions and results are gradually introduced. History, additional results, and references are presented in separate sections."--Résumé de l'éditeur.
Mathematics And Computation
DOWNLOAD
Author : Avi Wigderson
language : en
Publisher: Princeton University Press
Release Date : 2019-10-29
Mathematics And Computation written by Avi Wigderson and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-29 with Computers categories.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Algebraic Combinatorics
DOWNLOAD
Author : Richard P. Stanley
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-17
Algebraic Combinatorics written by Richard P. Stanley and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-17 with Mathematics categories.
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.