[PDF] Clifford Algebras And Lie Theory - eBooks Review

Clifford Algebras And Lie Theory


Clifford Algebras And Lie Theory
DOWNLOAD

Download Clifford Algebras And Lie Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Clifford Algebras And Lie Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Clifford Algebras And Lie Theory


Clifford Algebras And Lie Theory
DOWNLOAD
Author : Eckhard Meinrenken
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-02-28

Clifford Algebras And Lie Theory written by Eckhard Meinrenken and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-28 with Mathematics categories.


This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.



Clifford Algebras And Lie Theory


Clifford Algebras And Lie Theory
DOWNLOAD
Author : Eckhard Meinrenken
language : en
Publisher: Springer
Release Date : 2013-03-27

Clifford Algebras And Lie Theory written by Eckhard Meinrenken and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-27 with Mathematics categories.


This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.



Clifford Algebras And The Classical Groups


Clifford Algebras And The Classical Groups
DOWNLOAD
Author : Ian R. Porteous
language : en
Publisher: Cambridge University Press
Release Date : 1995-10-05

Clifford Algebras And The Classical Groups written by Ian R. Porteous and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-10-05 with Mathematics categories.


The Clifford algebras of real quadratic forms and their complexifications are studied here in detail, and those parts which are immediately relevant to theoretical physics are seen in the proper broad context. Central to the work is the classification of the conjugation and reversion anti-involutions that arise naturally in the theory. It is of interest that all the classical groups play essential roles in this classification. Other features include detailed sections on conformal groups, the eight-dimensional non-associative Cayley algebra, its automorphism group, the exceptional Lie group G(subscript 2), and the triality automorphism of Spin 8. The book is designed to be suitable for the last year of an undergraduate course or the first year of a postgraduate course.



Quadratic Algebras Clifford Algebras And Arithmetic Witt Groups


Quadratic Algebras Clifford Algebras And Arithmetic Witt Groups
DOWNLOAD
Author : Alexander J. Hahn
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Quadratic Algebras Clifford Algebras And Arithmetic Witt Groups written by Alexander J. Hahn and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.



Clifford Algebra To Geometric Calculus


Clifford Algebra To Geometric Calculus
DOWNLOAD
Author : David Hestenes
language : en
Publisher: Springer Science & Business Media
Release Date : 1984

Clifford Algebra To Geometric Calculus written by David Hestenes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Mathematics categories.


Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.



Basic Lie Theory


Basic Lie Theory
DOWNLOAD
Author : Hossein Abbaspour
language : en
Publisher: World Scientific
Release Date : 2007

Basic Lie Theory written by Hossein Abbaspour and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Science categories.


This volume provides a comprehensive treatment of basic Lie theory, primarily directed toward graduate study. The text is ideal for a full graduate course in Lie groups and Lie algebras. However, the book is also very usable for a variety of other courses: a one-semester course in Lie algebras, or on Haar measure and its applications, for advanced undergraduates; or as the text for one-semester graduate courses in Lie groups and symmetric spaces of non-compact type, or in lattices in Lie groups. The material is complete and detailed enough to be used for self-study; it can also serve as a reference work for professional mathematicians working in other areas. The book's utility for such a varied readership is enhanced by a diagram showing the interdependence of the separate chapters so that individual chapters and the material they depend upon can be selected, while others can be skipped.The book incorporates many of the most significant discoveries and pioneering contributions of the masters of the subject: Borel, Cartan, Chevalley, Iwasawa, Mostow, Siegel, and Weyl, among others.



Lie Groups And Algebras With Applications To Physics Geometry And Mechanics


Lie Groups And Algebras With Applications To Physics Geometry And Mechanics
DOWNLOAD
Author : D.H. Sattinger
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Lie Groups And Algebras With Applications To Physics Geometry And Mechanics written by D.H. Sattinger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselvesto the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.



Symmetries Lie Algebras And Representations


Symmetries Lie Algebras And Representations
DOWNLOAD
Author : Jürgen Fuchs
language : en
Publisher: Cambridge University Press
Release Date : 2003-10-07

Symmetries Lie Algebras And Representations written by Jürgen Fuchs and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-10-07 with Mathematics categories.


This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.



Quaternions Clifford Algebras And Relativistic Physics


Quaternions Clifford Algebras And Relativistic Physics
DOWNLOAD
Author : Patrick R. Girard
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-25

Quaternions Clifford Algebras And Relativistic Physics written by Patrick R. Girard and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-25 with Mathematics categories.


The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.



Differential Geometry And Lie Groups


Differential Geometry And Lie Groups
DOWNLOAD
Author : Jean Gallier
language : en
Publisher: Springer Nature
Release Date : 2020-08-18

Differential Geometry And Lie Groups written by Jean Gallier and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Mathematics categories.


This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.