Computational Intelligence In Intelligent Data Analysis

DOWNLOAD
Download Computational Intelligence In Intelligent Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Intelligence In Intelligent Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computational Intelligence In Intelligent Data Analysis
DOWNLOAD
Author : Christian Moewes
language : en
Publisher: Springer
Release Date : 2012-08-23
Computational Intelligence In Intelligent Data Analysis written by Christian Moewes and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-23 with Computers categories.
Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intelligence has been collected in this volume.
Computational Intelligent Data Analysis For Sustainable Development
DOWNLOAD
Author : Ting Yu
language : en
Publisher: CRC Press
Release Date : 2013-04-04
Computational Intelligent Data Analysis For Sustainable Development written by Ting Yu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-04 with Business & Economics categories.
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.
Computational Intelligence And Big Data Analytics
DOWNLOAD
Author : Ch. Satyanarayana
language : en
Publisher: Springer
Release Date : 2018-09-22
Computational Intelligence And Big Data Analytics written by Ch. Satyanarayana and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-22 with Computers categories.
This book highlights major issues related to big data analysis using computational intelligence techniques, mostly interdisciplinary in nature. It comprises chapters on computational intelligence technologies, such as neural networks and learning algorithms, evolutionary computation, fuzzy systems and other emerging techniques in data science and big data, ranging from methodologies, theory and algorithms for handling big data, to their applications in bioinformatics and related disciplines. The book describes the latest solutions, scientific results and methods in solving intriguing problems in the fields of big data analytics, intelligent agents and computational intelligence. It reflects the state of the art research in the field and novel applications of new processing techniques in computer science. This book is useful to both doctoral students and researchers from computer science and engineering fields and bioinformatics related domains.
Computational Intelligence In Data Mining
DOWNLOAD
Author : Himansu Sekhar Behera
language : en
Publisher: Springer
Release Date : 2019-08-17
Computational Intelligence In Data Mining written by Himansu Sekhar Behera and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-17 with Technology & Engineering categories.
This proceeding discuss the latest solutions, scientific findings and methods for solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. This gathers outstanding papers from the fifth International Conference on “Computational Intelligence in Data Mining” (ICCIDM), and offer a “sneak preview” of the strengths and weaknesses of trending applications, together with exciting advances in computational intelligence, data mining, and related fields.
Advances In Intelligent Data Analysis And Applications
DOWNLOAD
Author : Jeng-Shyang Pan
language : en
Publisher:
Release Date : 2022
Advances In Intelligent Data Analysis And Applications written by Jeng-Shyang Pan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15-18, 2019, Arad, Romania. This edition is technically co-sponsored by "Aurel Vlaicu" University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang'an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications. .
Artificial Intelligence And Big Data Analytics For Smart Healthcare
DOWNLOAD
Author : Miltiadis Lytras
language : en
Publisher: Academic Press
Release Date : 2021-10-22
Artificial Intelligence And Big Data Analytics For Smart Healthcare written by Miltiadis Lytras and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-22 with Medical categories.
Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers
Machine Intelligence And Data Analytics For Sustainable Future Smart Cities
DOWNLOAD
Author : Uttam Ghosh
language : en
Publisher: Springer Nature
Release Date : 2021-05-31
Machine Intelligence And Data Analytics For Sustainable Future Smart Cities written by Uttam Ghosh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-31 with Technology & Engineering categories.
This book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2007-06-07
Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-07 with Computers categories.
This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.
Applied Machine Learning For Smart Data Analysis
DOWNLOAD
Author : Nilanjan Dey
language : en
Publisher: CRC Press
Release Date : 2019-05-20
Applied Machine Learning For Smart Data Analysis written by Nilanjan Dey and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
The book focuses on how machine learning and the Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environments have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and thorough analysis of reviews. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results. Key Features Follows an algorithmic approach for data analysis in machine learning Introduces machine learning methods in applications Address the emerging issues in computing such as deep learning, machine learning, Internet of Things and data analytics Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets Case studies are covered relating to human health, transportation and Internet applications
Guide To Intelligent Data Science
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2020-08-15
Guide To Intelligent Data Science written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-15 with Computers categories.
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.