Computer Vision And Machine Intelligence

DOWNLOAD
Download Computer Vision And Machine Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computer Vision And Machine Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computer Vision And Machine Intelligence
DOWNLOAD
Author : Massimo Tistarelli
language : en
Publisher: Springer Nature
Release Date : 2023-05-05
Computer Vision And Machine Intelligence written by Massimo Tistarelli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-05 with Technology & Engineering categories.
This book presents selected research papers on current developments in the fields of computer vision and machine intelligence from International Conference on Computer Vision and Machine Intelligence (CVMI 2022). The book covers topics in image processing, artificial intelligence, machine learning, deep learning, computer vision, machine intelligence, etc. The book is useful for researchers, postgraduate and undergraduate students, and professionals working in this domain.
Machine Intelligence
DOWNLOAD
Author : Pethuru Raj
language : en
Publisher: CRC Press
Release Date : 2023-10-03
Machine Intelligence written by Pethuru Raj and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-03 with Computers categories.
Machines are being systematically empowered to be interactive and intelligent in their operations, offerings. and outputs. There are pioneering Artificial Intelligence (AI) technologies and tools. Machine and Deep Learning (ML/DL) algorithms, along with their enabling frameworks, libraries, and specialized accelerators, find particularly useful applications in computer and machine vision, human machine interfaces (HMIs), and intelligent machines. Machines that can see and perceive can bring forth deeper and decisive acceleration, automation, and augmentation capabilities to businesses as well as people in their everyday assignments. Machine vision is becoming a reality because of advancements in the computer vision and device instrumentation spaces. Machines are increasingly software-defined. That is, vision-enabling software and hardware modules are being embedded in new-generation machines to be self-, surroundings, and situation-aware. Machine Intelligence: Computer Vision and Natural Language Processing emphasizes computer vision and natural language processing as drivers of advances in machine intelligence. The book examines these technologies from the algorithmic level to the applications level. It also examines the integrative technologies enabling intelligent applications in business and industry. Features: Motion images object detection over voice using deep learning algorithms Ubiquitous computing and augmented reality in HCI Learning and reasoning in Artificial Intelligence Economic sustainability, mindfulness, and diversity in the age of artificial intelligence and machine learning Streaming analytics for healthcare and retail domains Covering established and emerging technologies in machine vision, the book focuses on recent and novel applications and discusses state-of-the-art technologies and tools.
Applications Of Advanced Machine Intelligence In Computer Vision And Object Recognition Emerging Research And Opportunities
DOWNLOAD
Author : Chakraborty, Shouvik
language : en
Publisher: IGI Global
Release Date : 2020-03-13
Applications Of Advanced Machine Intelligence In Computer Vision And Object Recognition Emerging Research And Opportunities written by Chakraborty, Shouvik and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-13 with Computers categories.
Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.
Computer Vision And Machine Intelligence In Medical Image Analysis
DOWNLOAD
Author : Mousumi Gupta
language : en
Publisher: Springer Nature
Release Date : 2019-08-28
Computer Vision And Machine Intelligence In Medical Image Analysis written by Mousumi Gupta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-28 with Technology & Engineering categories.
This book includes high-quality papers presented at the Symposium 2019, organised by Sikkim Manipal Institute of Technology (SMIT), in Sikkim from 26–27 February 2019. It discusses common research problems and challenges in medical image analysis, such as deep learning methods. It also discusses how these theories can be applied to a broad range of application areas, including lung and chest x-ray, breast CAD, microscopy and pathology. The studies included mainly focus on the detection of events from biomedical signals.
Computer Vision And Machine Intelligence For Renewable Energy Systems
DOWNLOAD
Author : Ashutosh Kumar Dubey
language : en
Publisher: Elsevier
Release Date : 2024-09-20
Computer Vision And Machine Intelligence For Renewable Energy Systems written by Ashutosh Kumar Dubey and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-20 with Technology & Engineering categories.
Computer Vision and Machine Intelligence for Renewable Energy Systems offers a practical, systemic guide to the use of computer vision as an innovative tool to support renewable energy integration.This book equips readers with a variety of essential tools and applications: Part I outlines the fundamentals of computer vision and its unique benefits in renewable energy system models compared to traditional machine intelligence: minimal computing power needs, speed, and accuracy even with partial data. Part II breaks down specific techniques, including those for predictive modeling, performance prediction, market models, and mitigation measures. Part III offers case studies and applications to a wide range of renewable energy sources, and finally the future possibilities of the technology are considered. The very first book in Elsevier's cutting-edge new series Advances in Intelligent Energy Systems, Computer Vision and Machine Intelligence for Renewable Energy Systems provides engineers and renewable energy researchers with a holistic, clear introduction to this promising strategy for control and reliability in renewable energy grids. - Provides a sorely needed primer on the opportunities of computer vision techniques for renewable energy systems - Builds knowledge and tools in a systematic manner, from fundamentals to advanced applications - Includes dedicated chapters with case studies and applications for each sustainable energy source
Challenges And Applications For Implementing Machine Learning In Computer Vision
DOWNLOAD
Author : Kashyap, Ramgopal
language : en
Publisher: IGI Global
Release Date : 2019-10-04
Challenges And Applications For Implementing Machine Learning In Computer Vision written by Kashyap, Ramgopal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-04 with Computers categories.
Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
Explainable And Interpretable Models In Computer Vision And Machine Learning
DOWNLOAD
Author : Hugo Jair Escalante
language : en
Publisher: Springer
Release Date : 2018-11-29
Explainable And Interpretable Models In Computer Vision And Machine Learning written by Hugo Jair Escalante and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-29 with Computers categories.
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations
Covariances In Computer Vision And Machine Learning
DOWNLOAD
Author : Hà Quang Minh
language : en
Publisher: Morgan & Claypool
Release Date : 2017-11-07
Covariances In Computer Vision And Machine Learning written by Hà Quang Minh and has been published by Morgan & Claypool this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-07 with categories.
Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications. In this book, we begin by presenting an overview of the {\it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance. We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {\it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance. Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.
Computer Vision Projects With Opencv And Python 3
DOWNLOAD
Author : Matthew Rever
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-28
Computer Vision Projects With Opencv And Python 3 written by Matthew Rever and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-28 with Computers categories.
Gain a working knowledge of advanced machine learning and explore Python’s powerful tools for extracting data from images and videos Key FeaturesImplement image classification and object detection using machine learning and deep learningPerform image classification, object detection, image segmentation, and other Computer Vision tasksCrisp content with a practical approach to solving real-world problems in Computer VisionBook Description Python is the ideal programming language for rapidly prototyping and developing production-grade codes for image processing and Computer Vision with its robust syntax and wealth of powerful libraries. This book will help you design and develop production-grade Computer Vision projects tackling real-world problems. With the help of this book, you will learn how to set up Anaconda and Python for the major OSes with cutting-edge third-party libraries for Computer Vision. You'll learn state-of-the-art techniques for classifying images, finding and identifying human postures, and detecting faces within videos. You will use powerful machine learning tools such as OpenCV, Dlib, and TensorFlow to build exciting projects such as classifying handwritten digits, detecting facial features,and much more. The book also covers some advanced projects, such as reading text from license plates from real-world images using Google’s Tesseract software, and tracking human body poses using DeeperCut within TensorFlow. By the end of this book, you will have the expertise required to build your own Computer Vision projects using Python and its associated libraries. What you will learnInstall and run major Computer Vision packages within PythonApply powerful support vector machines for simple digit classificationUnderstand deep learning with TensorFlowBuild a deep learning classifier for general imagesUse LSTMs for automated image captioningRead text from real-world imagesExtract human pose data from imagesWho this book is for Python programmers and machine learning developers who wish to build exciting Computer Vision projects using the power of machine learning and OpenCV will find this book useful. The only prerequisite for this book is that you should have a sound knowledge of Python programming.
Computer Vision And Machine Intelligence For Renewable Energy Systems
DOWNLOAD
Author : Ashutosh Kumar Dubey
language : en
Publisher: Elsevier
Release Date : 2024-10
Computer Vision And Machine Intelligence For Renewable Energy Systems written by Ashutosh Kumar Dubey and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10 with Technology & Engineering categories.
Computer Vision and Machine Intelligence in Renewable Energy Systems, the first release in Elsevier's cutting-edge new series, Advances in Intelligent Energy Systems, offers a practical, systemic guide to the use of computer vision as an innovative tool to support renewable energy integration. The book equips readers with a variety of essential tools and applications, outlining the fundamentals of computer vision and its unique benefits in renewable energy system models compared to traditional machine intelligence and breaking down specific techniques, including those for predictive modeling, performance prediction, market models, and mitigation measures. Other sections offer case studies and applications to a wide range of renewable energy source and the future possibilities of the technology. This book provides engineers and renewable energy researchers with a holistic, clear introduction to this promising strategy for control and reliability in renewable energy grids.