[PDF] Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual - eBooks Review

Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual


Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual
DOWNLOAD

Download Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual


Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual
DOWNLOAD
Author : Lars Carlsson
language : en
Publisher:
Release Date : 2021

Conformal And Probabilistic Prediction And Applications 8 10 September 2021 Virtual written by Lars Carlsson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.




All Of Nonparametric Statistics


All Of Nonparametric Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-10

All Of Nonparametric Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-10 with Mathematics categories.


There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master’s-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master’s-level students. For Ph. D.



Conformal Prediction For Reliable Machine Learning


Conformal Prediction For Reliable Machine Learning
DOWNLOAD
Author : Vineeth Balasubramanian
language : en
Publisher: Newnes
Release Date : 2014-04-23

Conformal Prediction For Reliable Machine Learning written by Vineeth Balasubramanian and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-23 with Computers categories.


The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection



Uncertainty For Safe Utilization Of Machine Learning In Medical Imaging


Uncertainty For Safe Utilization Of Machine Learning In Medical Imaging
DOWNLOAD
Author : Carole H. Sudre
language : en
Publisher: Springer Nature
Release Date : 2024-10-02

Uncertainty For Safe Utilization Of Machine Learning In Medical Imaging written by Carole H. Sudre and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-02 with Computers categories.


This book constitutes the refereed proceedings of the 6th Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 10, 2024. The 20 full papers presented in this book were carefully reviewed and selected from 28 submissions. They are organized in the following topical sections: annotation uncertainty; clinical implementation of uncertainty modelling and risk management in clinical pipelines; out of distribution and domain shift identification and management; uncertainty modelling and estimation.



Probably Approximately Correct


Probably Approximately Correct
DOWNLOAD
Author : Leslie Valiant
language : en
Publisher: Basic Books
Release Date : 2013-06-04

Probably Approximately Correct written by Leslie Valiant and has been published by Basic Books this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-04 with Science categories.


From a leading computer scientist, a unifying theory that will revolutionize our understanding of how life evolves and learns. How does life prosper in a complex and erratic world? While we know that nature follows patterns -- such as the law of gravity -- our everyday lives are beyond what known science can predict. We nevertheless muddle through even in the absence of theories of how to act. But how do we do it? In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is "probably approximately correct" algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant's theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence. Offering a powerful and elegant model that encompasses life's complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.



Algorithmic Learning In A Random World


Algorithmic Learning In A Random World
DOWNLOAD
Author : Vladimir Vovk
language : en
Publisher: Springer
Release Date : 2010-10-29

Algorithmic Learning In A Random World written by Vladimir Vovk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-29 with Computers categories.


Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.



Deep Learning And Physics


Deep Learning And Physics
DOWNLOAD
Author : Akinori Tanaka
language : en
Publisher: Springer Nature
Release Date : 2021-02-20

Deep Learning And Physics written by Akinori Tanaka and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-20 with Science categories.


What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.



Gaussian Processes For Machine Learning


Gaussian Processes For Machine Learning
DOWNLOAD
Author : Carl Edward Rasmussen
language : en
Publisher: MIT Press
Release Date : 2005-11-23

Gaussian Processes For Machine Learning written by Carl Edward Rasmussen and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-23 with Computers categories.


A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.



Machine Learning In Radiation Oncology


Machine Learning In Radiation Oncology
DOWNLOAD
Author : Issam El Naqa
language : en
Publisher: Springer
Release Date : 2015-06-19

Machine Learning In Radiation Oncology written by Issam El Naqa and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-19 with Medical categories.


​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.



Elements Of Information Theory


Elements Of Information Theory
DOWNLOAD
Author : Thomas M. Cover
language : en
Publisher: John Wiley & Sons
Release Date : 2012-11-28

Elements Of Information Theory written by Thomas M. Cover and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-28 with Computers categories.


The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: Chapters reorganized to improve teaching 200 new problems New material on source coding, portfolio theory, and feedback capacity Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.