[PDF] Continuous Machine Learning With Kubeflow - eBooks Review

Continuous Machine Learning With Kubeflow


Continuous Machine Learning With Kubeflow
DOWNLOAD

Download Continuous Machine Learning With Kubeflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Continuous Machine Learning With Kubeflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Continuous Machine Learning With Kubeflow


Continuous Machine Learning With Kubeflow
DOWNLOAD
Author : Aniruddha Choudhury
language : en
Publisher: BPB Publications
Release Date : 2021-11-20

Continuous Machine Learning With Kubeflow written by Aniruddha Choudhury and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-20 with Computers categories.


An insightful journey to MLOps, DevOps, and Machine Learning in the real environment. KEY FEATURES ● Extensive knowledge and concept explanation of Kubernetes components with examples. ● An all-in-one knowledge guide to train and deploy ML pipelines using Docker and Kubernetes. ● Includes numerous MLOps projects with access to proven frameworks and the use of deep learning concepts. DESCRIPTION 'Continuous Machine Learning with Kubeflow' introduces you to the modern machine learning infrastructure, which includes Kubernetes and the Kubeflow architecture. This book will explain the fundamentals of deploying various AI/ML use cases with TensorFlow training and serving with Kubernetes and how Kubernetes can help with specific projects from start to finish. This book will help demonstrate how to use Kubeflow components, deploy them in GCP, and serve them in production using real-time data prediction. With Kubeflow KFserving, we'll look at serving techniques, build a computer vision-based user interface in streamlit, and then deploy it to the Google cloud platforms, Kubernetes and Heroku. Next, we also explore how to build Explainable AI for determining fairness and biasness with a What-if tool. Backed with various use-cases, we will learn how to put machine learning into production, including training and serving. After reading this book, you will be able to build your ML projects in the cloud using Kubeflow and the latest technology. In addition, you will gain a solid knowledge of DevOps and MLOps, which will open doors to various job roles in companies. WHAT YOU WILL LEARN ● Get comfortable with the architecture and the orchestration of Kubernetes. ● Learn to containerize and deploy from scratch using Docker and Google Cloud Platform. ● Practice how to develop the Kubeflow Orchestrator pipeline for a TensorFlow model. ● Create AWS SageMaker pipelines, right from training to deployment in production. ● Build the TensorFlow Extended (TFX) pipeline for an NLP application using Tensorboard and TFMA. WHO THIS BOOK IS FOR This book is for MLOps, DevOps, Machine Learning Engineers, and Data Scientists who want to continuously deploy machine learning pipelines and manage them at scale using Kubernetes. The readers should have a strong background in machine learning and some knowledge of Kubernetes is required. TABLE OF CONTENTS 1. Introduction to Kubeflow & Kubernetes Cloud Architecture 2. Developing Kubeflow Pipeline in GCP 3. Designing Computer Vision Model in Kubeflow 4. Building TFX Pipeline 5. ML Model Explainability & Interpretability 6. Building Weights & Biases Pipeline Development 7. Applied ML with AWS Sagemaker 8. Web App Development with Streamlit & Heroku



Kubeflow For Machine Learning


Kubeflow For Machine Learning
DOWNLOAD
Author : Trevor Grant
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-10-13

Kubeflow For Machine Learning written by Trevor Grant and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-13 with Computers categories.


If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production



Data Science On Aws


Data Science On Aws
DOWNLOAD
Author : Chris Fregly
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-04-07

Data Science On Aws written by Chris Fregly and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-07 with Computers categories.


With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more



Building Machine Learning Pipelines


Building Machine Learning Pipelines
DOWNLOAD
Author : Hannes Hapke
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-07-13

Building Machine Learning Pipelines written by Hannes Hapke and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-13 with Computers categories.


Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques



Practical Machine Learning For Computer Vision


Practical Machine Learning For Computer Vision
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-07-21

Practical Machine Learning For Computer Vision written by Valliappa Lakshmanan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-21 with Computers categories.


This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models



Machine Learning Design Patterns


Machine Learning Design Patterns
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: O'Reilly Media
Release Date : 2020-10-15

Machine Learning Design Patterns written by Valliappa Lakshmanan and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-15 with Computers categories.


The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly



Introduction To Data Governance For Machine Learning Systems


Introduction To Data Governance For Machine Learning Systems
DOWNLOAD
Author : Aditya Nandan Prasad
language : en
Publisher: Springer Nature
Release Date : 2024-12-13

Introduction To Data Governance For Machine Learning Systems written by Aditya Nandan Prasad and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-13 with Mathematics categories.


This book is the first comprehensive guide to the intersection of data governance and machine learning (ML) projects. As ML applications proliferate, the quality, reliability, and ethical use of data is central to their success, which gives ML data governance unprecedented significance. However, adapting data governance principles to ML systems presents unique, complex challenges. Author Aditya Nandan Prasad equips you with the knowledge and tools needed to navigate this dynamic landscape effectively. Through this guide, you will learn to implement robust and responsible data governance practices, ensuring the development of sustainable, ethical, and future-proofed AI applications. The book begins by covering fundamental principles and practices of underlying ML applications and data governance before diving into the unique challenges and opportunities at play when adapting data governance theory and practice to ML projects, including establishing governance frameworks, ensuring data quality and interpretability, preprocessing, and the ethical implications of ML algorithms and techniques, from mitigating bias in AI systems to the importance of transparency in models. Monitoring and maintaining ML systems performance is also covered in detail, along with regulatory compliance and risk management considerations. Moreover, the book explores strategies for fostering a data-driven culture within organizations and offers guidance on change management to ensure successful adoption of data governance initiatives. Looking ahead, the book examines future trends and emerging challenges in ML data governance, such as Explainable AI (XAI) and the increasing complexity of data. What You Will Learn Comprehensive understanding of machine learning and data governance, including fundamental principles, critical practices, and emerging challenges Navigating the complexities of managing data effectively within the context of machine learning projects Practical strategies and best practices for implementing effective data governance in machine learning projects Key aspects such as data quality, privacy, security, and ethical considerations, ensuring responsible and effective use of data Preparation for the evolving landscape of ML data governance with a focus on future trends and emerging challenges in the rapidly evolving field of AI and machine learning Who This Book Is For Data professionals, including data scientists, data engineers, AI developers, or data governance specialists, as well as managers or decision makers looking to implement or improve data governance practices for machine learning projects



Accelerated Devops With Ai Ml Rpa


Accelerated Devops With Ai Ml Rpa
DOWNLOAD
Author : Stephen Fleming
language : en
Publisher: Stephen Fleming
Release Date : 2020-07-14

Accelerated Devops With Ai Ml Rpa written by Stephen Fleming and has been published by Stephen Fleming this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-14 with Computers categories.


What comes to your mind after reading the below statements from a renowned industry research firm? It is predicted that a large enterprise exclusive use of AIOps and digital experience monitoring tools to monitor applications and infrastructure will rise from 5% in 2018 to 30% in 2023. Also, Only 47% of machine learning models are making it into production (Comes MLOPS!) Do you have similar thoughts? Is it just a new Buzzword or repackaging of the existing system? If it’s for real, how is it going to impact the Business/Industry? How my business or job would get impacted? If it has just started, how can I leverage from wherever I am? Which are the major players/startups in this area? Depending on your role, it may be useful for you to know about AIOPS & MLOPS: If you are a Business Consultant trying to make the system more efficient and profitable, reaping the benefits of Automation in your application development process If you are a Technology Consultant and want to make your operation more Agile, Automated and easily deployable If you are a Technology Professional looking for a role in these upcoming areas to be an early adopter in your organization or just starting your career and want to understand the ecosystem If you are from HR or Training field and want to understand the job/Training requirements for these upcoming roles Beyond the apparent hustle and bustle of buzzwords and nomenclature every year, I genuinely believe that AI would drastically change the software development and deployment model in the next two years, and all these new startups would drive this change. It’s astonishing how fast this cycle is moving. Especially for us who had seen the world before the internet came into our daily lives!!This book is my attempt to update you on the unfolding story of AIOPS and MLOPS as “story till now. “ So here is to our Continuous Learning and Progress! Cheers.



Synergizing Ai Devops And Deep Learning Integrating Nlp For Next Generation Innovations


Synergizing Ai Devops And Deep Learning Integrating Nlp For Next Generation Innovations
DOWNLOAD
Author : Venkata Mohit Tamanampudi
language : en
Publisher: Libertatem Media Private Limited
Release Date : 2023-04-12

Synergizing Ai Devops And Deep Learning Integrating Nlp For Next Generation Innovations written by Venkata Mohit Tamanampudi and has been published by Libertatem Media Private Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-12 with Computers categories.


This book explores the powerful intersection of Artificial Intelligence (AI), DevOps, Natural Language Processing (NLP), and Deep Learning, focusing on how these technologies can be combined to build more efficient, automated, and intelligent systems. It delves into the principles behind AI and DevOps, offering a roadmap for integrating these practices to enable continuous delivery and automation of machine learning models. NLP is highlighted as a critical technology that bridges human-computer interaction, while Deep Learning provides the backbone for powerful, data-driven decision-making systems. Readers will gain practical insights into building scalable systems, utilizing AI-driven DevOps pipelines, and integrating NLP for developing smart, interactive applications. The book will provide real-world examples and step-by-step guides for adopting cutting-edge AI/ML methodologies with the speed and agility of DevOps processes, making it an essential read for data scientists, AI engineers, and DevOps practitioners.



Machine Learning Production Systems


Machine Learning Production Systems
DOWNLOAD
Author : Robert Crowe
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2024-10-02

Machine Learning Production Systems written by Robert Crowe and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-02 with Computers categories.


Using machine learning for products, services, and critical business processes is quite different from using ML in an academic or research setting—especially for recent ML graduates and those moving from research to a commercial environment. Whether you currently work to create products and services that use ML, or would like to in the future, this practical book gives you a broad view of the entire field. Authors Robert Crowe, Hannes Hapke, Emily Caveness, and Di Zhu help you identify topics that you can dive into deeper, along with reference materials and tutorials that teach you the details. You'll learn the state of the art of machine learning engineering, including a wide range of topics such as modeling, deployment, and MLOps. You'll learn the basics and advanced aspects to understand the production ML lifecycle. This book provides four in-depth sections that cover all aspects of machine learning engineering: Data: collecting, labeling, validating, automation, and data preprocessing; data feature engineering and selection; data journey and storage Modeling: high performance modeling; model resource management techniques; model analysis and interoperability; neural architecture search Deployment: model serving patterns and infrastructure for ML models and LLMs; management and delivery; monitoring and logging Productionalizing: ML pipelines; classifying unstructured texts and images; genAI model pipelines