Kubeflow For Machine Learning

DOWNLOAD
Download Kubeflow For Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Kubeflow For Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Kubeflow For Machine Learning
DOWNLOAD
Author : Trevor Grant
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-10-13
Kubeflow For Machine Learning written by Trevor Grant and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-13 with Computers categories.
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production
Kubeflow For Machine Learning
DOWNLOAD
Author : L. Trevor Grant
language : en
Publisher:
Release Date : 2021
Kubeflow For Machine Learning written by L. Trevor Grant and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Machine learning categories.
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production.
Kubeflow For Machine Learning
DOWNLOAD
Author : Trevor Grant
language : en
Publisher: O'Reilly Media
Release Date : 2020-10-13
Kubeflow For Machine Learning written by Trevor Grant and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-13 with Computers categories.
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production
Kubeflow For Machine Learning
DOWNLOAD
Author : Holden Karau
language : en
Publisher: O'Reilly Media
Release Date : 2020-12-08
Kubeflow For Machine Learning written by Holden Karau and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-08 with categories.
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Learn how to set up Kubeflow on a cloud provider or on an in-house cluster Train models using Kubeflow with popular tools including scikit-learn, TensorFlow, and Apache Spark Learn how to add custom stages such as serving and prediction Keep your model up-to-date with Kubeflow Pipelines Understand how to validate machine learning pipelines
Continuous Machine Learning With Kubeflow
DOWNLOAD
Author : Aniruddha Choudhury
language : en
Publisher: BPB Publications
Release Date : 2021-11-20
Continuous Machine Learning With Kubeflow written by Aniruddha Choudhury and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-20 with Computers categories.
An insightful journey to MLOps, DevOps, and Machine Learning in the real environment. KEY FEATURES ● Extensive knowledge and concept explanation of Kubernetes components with examples. ● An all-in-one knowledge guide to train and deploy ML pipelines using Docker and Kubernetes. ● Includes numerous MLOps projects with access to proven frameworks and the use of deep learning concepts. DESCRIPTION 'Continuous Machine Learning with Kubeflow' introduces you to the modern machine learning infrastructure, which includes Kubernetes and the Kubeflow architecture. This book will explain the fundamentals of deploying various AI/ML use cases with TensorFlow training and serving with Kubernetes and how Kubernetes can help with specific projects from start to finish. This book will help demonstrate how to use Kubeflow components, deploy them in GCP, and serve them in production using real-time data prediction. With Kubeflow KFserving, we'll look at serving techniques, build a computer vision-based user interface in streamlit, and then deploy it to the Google cloud platforms, Kubernetes and Heroku. Next, we also explore how to build Explainable AI for determining fairness and biasness with a What-if tool. Backed with various use-cases, we will learn how to put machine learning into production, including training and serving. After reading this book, you will be able to build your ML projects in the cloud using Kubeflow and the latest technology. In addition, you will gain a solid knowledge of DevOps and MLOps, which will open doors to various job roles in companies. WHAT YOU WILL LEARN ● Get comfortable with the architecture and the orchestration of Kubernetes. ● Learn to containerize and deploy from scratch using Docker and Google Cloud Platform. ● Practice how to develop the Kubeflow Orchestrator pipeline for a TensorFlow model. ● Create AWS SageMaker pipelines, right from training to deployment in production. ● Build the TensorFlow Extended (TFX) pipeline for an NLP application using Tensorboard and TFMA. WHO THIS BOOK IS FOR This book is for MLOps, DevOps, Machine Learning Engineers, and Data Scientists who want to continuously deploy machine learning pipelines and manage them at scale using Kubernetes. The readers should have a strong background in machine learning and some knowledge of Kubernetes is required. TABLE OF CONTENTS 1. Introduction to Kubeflow & Kubernetes Cloud Architecture 2. Developing Kubeflow Pipeline in GCP 3. Designing Computer Vision Model in Kubeflow 4. Building TFX Pipeline 5. ML Model Explainability & Interpretability 6. Building Weights & Biases Pipeline Development 7. Applied ML with AWS Sagemaker 8. Web App Development with Streamlit & Heroku
Building Machine Learning Pipelines
DOWNLOAD
Author : Hannes Hapke
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-07-13
Building Machine Learning Pipelines written by Hannes Hapke and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-13 with Computers categories.
Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
The Kubeflow Handbook
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2025-01-05
The Kubeflow Handbook written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-05 with Computers categories.
"The Kubeflow Handbook: Streamlining Machine Learning on Kubernetes" is a comprehensive guide tailored for individuals seeking to harness the power of Kubeflow within the Kubernetes ecosystem. Written by an expert in computer science and software engineering, this book delves deep into the essential components and processes that make Kubeflow an invaluable tool for managing machine learning workflows. From its architecture to practical applications across various industries, readers will be equipped with the knowledge and skills necessary to deploy, scale, secure, and optimize machine learning models efficiently. The handbook is meticulously structured to take readers from foundational concepts to advanced techniques, ensuring a thorough understanding of topics like Kubeflow Pipelines, model training and tuning, and serving and monitoring models. It also emphasizes the importance of security, compliance, and scalability, providing best practices and strategies to address the challenges of machine learning in production environments. With real-world case studies and step-by-step guidance, this book is an indispensable resource for data scientists, engineers, and IT professionals looking to elevate their machine learning initiatives using Kubeflow.
Kubeflow Operations Guide
DOWNLOAD
Author : Josh Patterson
language : en
Publisher: O'Reilly Media
Release Date : 2020-12-04
Kubeflow Operations Guide written by Josh Patterson and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-04 with Computers categories.
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premises Kubernetes cluster Deploy Kubeflow on Google Cloud Platform step-by-step from the command line Use the managed Amazon Elastic Kubernetes Service (EKS) to deploy Kubeflow on AWS Deploy and manage Kubeflow across a network of Azure cloud data centers around the world Use KFServing to develop and deploy machine learning models
Building Machine Learning And Deep Learning Models On Google Cloud Platform
DOWNLOAD
Author : Ekaba Bisong
language : en
Publisher: Apress
Release Date : 2019-09-27
Building Machine Learning And Deep Learning Models On Google Cloud Platform written by Ekaba Bisong and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-27 with Computers categories.
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is dividedinto eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers
Kubeflow Operations Guide
DOWNLOAD
Author : Josh Patterson
language : en
Publisher:
Release Date : 2020
Kubeflow Operations Guide written by Josh Patterson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
When deploying machine learning applications, building models is only a small part of the story. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads-a process Kubeflow makes much easier. With this practical guide, data scientists, data engineers, and platform architects will learn how to plan and execute a Kubeflow project that can support workflows from on-premises to the cloud. Kubeflow is an open source Kubernetes-native platform based on Google's internal machine learning pipelines, and yet major cloud vendors including AWS and Azure advocate the use of Kubernetes and Kubeflow to manage containers and machine learning infrastructure. In today's cloud-based world, this book is ideal for any team planning to build machine learning applications. With this book, you will: Get a concise overview of Kubernetes and Kubeflow Learn how to plan and build a Kubeflow installation Operate, monitor, and automate your installation Provide your Kubeflow installation with adequate security Serve machine learning models on Kubeflow.