[PDF] Control Systems And Reinforcement Learning - eBooks Review

Control Systems And Reinforcement Learning


Control Systems And Reinforcement Learning
DOWNLOAD

Download Control Systems And Reinforcement Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Control Systems And Reinforcement Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Control Systems And Reinforcement Learning


Control Systems And Reinforcement Learning
DOWNLOAD
Author : Sean Meyn
language : en
Publisher: Cambridge University Press
Release Date : 2022-06-09

Control Systems And Reinforcement Learning written by Sean Meyn and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-09 with Business & Economics categories.


A how-to guide and scientific tutorial covering the universe of reinforcement learning and control theory for online decision making.



Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games


Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games
DOWNLOAD
Author : Bosen Lian
language : en
Publisher: Springer Nature
Release Date : 2024-03-05

Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games written by Bosen Lian and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-05 with Technology & Engineering categories.


Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games develops its specific learning techniques, motivated by application to autonomous driving and microgrid systems, with breadth and depth: integral reinforcement learning (RL) achieves model-free control without system estimation compared with system identification methods and their inevitable estimation errors; novel inverse RL methods fill a gap that will help them to attract readers interested in finding data-driven model-free solutions for inverse optimization and optimal control, imitation learning and autonomous driving among other areas. Graduate students will find that this book offers a thorough introduction to integral and inverse RL for feedback control related to optimal regulation and tracking, disturbance rejection, and multiplayer and multiagent systems. For researchers, it provides a combination of theoretical analysis, rigorous algorithms, and a wide-ranging selection of examples. The book equips practitioners working in various domains – aircraft, robotics, power systems, and communication networks among them – with theoretical insights valuable in tackling the real-world challenges they face.



Handbook Of Reinforcement Learning And Control


Handbook Of Reinforcement Learning And Control
DOWNLOAD
Author : Kyriakos G. Vamvoudakis
language : en
Publisher: Springer Nature
Release Date : 2021-06-23

Handbook Of Reinforcement Learning And Control written by Kyriakos G. Vamvoudakis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-23 with Technology & Engineering categories.


This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.



Introduction To Intelligent Systems Control And Machine Learning Using Matlab


Introduction To Intelligent Systems Control And Machine Learning Using Matlab
DOWNLOAD
Author : Marco P. Schoen
language : en
Publisher: Cambridge University Press
Release Date : 2023-11-16

Introduction To Intelligent Systems Control And Machine Learning Using Matlab written by Marco P. Schoen and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-16 with Technology & Engineering categories.


Dive into the foundations of intelligent systems, machine learning, and control with this hands-on, project-based introductory textbook. Precise, clear introductions to core topics in fuzzy logic, neural networks, optimization, deep learning, and machine learning, avoid the use of complex mathematical proofs, and are supported by over 70 examples. Modular chapters built around a consistent learning framework enable tailored course offerings to suit different learning paths. Over 180 open-ended review questions support self-review and class discussion, over 120 end-of-chapter problems cement student understanding, and over 20 hands-on Arduino assignments connect theory to practice, supported by downloadable Matlab and Simulink code. Comprehensive appendices review the fundamentals of modern control, and contain practical information on implementing hands-on assignments using Matlab, Simulink, and Arduino. Accompanied by solutions for instructors, this is the ideal guide for senior undergraduate and graduate engineering students, and professional engineers, looking for an engaging and practical introduction to the field.



Control Systems


Control Systems
DOWNLOAD
Author : Jitendra R. Raol
language : en
Publisher: CRC Press
Release Date : 2019-07-12

Control Systems written by Jitendra R. Raol and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-12 with Technology & Engineering categories.


Control Systems: Classical, Modern, and AI-Based Approaches provides a broad and comprehensive study of the principles, mathematics, and applications for those studying basic control in mechanical, electrical, aerospace, and other engineering disciplines. The text builds a strong mathematical foundation of control theory of linear, nonlinear, optimal, model predictive, robust, digital, and adaptive control systems, and it addresses applications in several emerging areas, such as aircraft, electro-mechanical, and some nonengineering systems: DC motor control, steel beam thickness control, drum boiler, motional control system, chemical reactor, head-disk assembly, pitch control of an aircraft, yaw-damper control, helicopter control, and tidal power control. Decentralized control, game-theoretic control, and control of hybrid systems are discussed. Also, control systems based on artificial neural networks, fuzzy logic, and genetic algorithms, termed as AI-based systems are studied and analyzed with applications such as auto-landing aircraft, industrial process control, active suspension system, fuzzy gain scheduling, PID control, and adaptive neuro control. Numerical coverage with MATLAB® is integrated, and numerous examples and exercises are included for each chapter. Associated MATLAB® code will be made available.



Reinforcement Learning And Approximate Dynamic Programming For Feedback Control


Reinforcement Learning And Approximate Dynamic Programming For Feedback Control
DOWNLOAD
Author : Frank L. Lewis
language : en
Publisher: John Wiley & Sons
Release Date : 2013-01-28

Reinforcement Learning And Approximate Dynamic Programming For Feedback Control written by Frank L. Lewis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-28 with Technology & Engineering categories.


Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.



Mathematical Foundations Of Reinforcement Learning


Mathematical Foundations Of Reinforcement Learning
DOWNLOAD
Author : Shiyu Zhao
language : en
Publisher: Springer Nature
Release Date : 2025-01-21

Mathematical Foundations Of Reinforcement Learning written by Shiyu Zhao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-21 with Computers categories.


This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability. The book is divided into two parts. The first part is on the mathematical foundations of reinforcement learning, covering topics such as the Bellman equation, Bellman optimality equation, and stochastic approximation. The second part explicates reinforcement learning algorithms, including value iteration and policy iteration, Monte Carlo methods, temporal-difference methods, value function methods, policy gradient methods, and actor-critic methods. With its comprehensive scope, the book will appeal to undergraduate and graduate students, post-doctoral researchers, lecturers, industrial researchers, and anyone interested in reinforcement learning.



Reinforcement Learning


Reinforcement Learning
DOWNLOAD
Author : Cornelius Weber
language : en
Publisher: BoD – Books on Demand
Release Date : 2008-01-01

Reinforcement Learning written by Cornelius Weber and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-01 with Computers categories.


Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field.



Reinforcement Learning Second Edition


Reinforcement Learning Second Edition
DOWNLOAD
Author : Richard S. Sutton
language : en
Publisher: MIT Press
Release Date : 2018-11-13

Reinforcement Learning Second Edition written by Richard S. Sutton and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-13 with Computers categories.


The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.



Reinforcement Learning And Optimal Control


Reinforcement Learning And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2019-07-01

Reinforcement Learning And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Computers categories.


This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.