Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games

DOWNLOAD
Download Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games
DOWNLOAD
Author : Bosen Lian
language : en
Publisher: Springer Nature
Release Date : 2024-03-05
Integral And Inverse Reinforcement Learning For Optimal Control Systems And Games written by Bosen Lian and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-05 with Technology & Engineering categories.
Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games develops its specific learning techniques, motivated by application to autonomous driving and microgrid systems, with breadth and depth: integral reinforcement learning (RL) achieves model-free control without system estimation compared with system identification methods and their inevitable estimation errors; novel inverse RL methods fill a gap that will help them to attract readers interested in finding data-driven model-free solutions for inverse optimization and optimal control, imitation learning and autonomous driving among other areas. Graduate students will find that this book offers a thorough introduction to integral and inverse RL for feedback control related to optimal regulation and tracking, disturbance rejection, and multiplayer and multiagent systems. For researchers, it provides a combination of theoretical analysis, rigorous algorithms, and a wide-ranging selection of examples. The book equips practitioners working in various domains – aircraft, robotics, power systems, and communication networks among them – with theoretical insights valuable in tackling the real-world challenges they face.
Reinforcement Learning For Optimal Feedback Control
DOWNLOAD
Author : Rushikesh Kamalapurkar
language : en
Publisher: Springer
Release Date : 2018-05-10
Reinforcement Learning For Optimal Feedback Control written by Rushikesh Kamalapurkar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-10 with Technology & Engineering categories.
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.
Inverse Dynamic Game Methods For Identification Of Cooperative System Behavior
DOWNLOAD
Author : Inga Charaja, Juan Jairo
language : en
Publisher: KIT Scientific Publishing
Release Date : 2021-07-12
Inverse Dynamic Game Methods For Identification Of Cooperative System Behavior written by Inga Charaja, Juan Jairo and has been published by KIT Scientific Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-12 with Technology & Engineering categories.
This work addresses inverse dynamic games, which generalize the inverse problem of optimal control, and where the aim is to identify cost functions based on observed optimal trajectories. The identified cost functions can describe individual behavior in cooperative systems, e.g. human behavior in human-machine haptic shared control scenarios.
Reinforcement Learning And Approximate Dynamic Programming For Feedback Control
DOWNLOAD
Author : Frank L. Lewis
language : en
Publisher: John Wiley & Sons
Release Date : 2013-01-28
Reinforcement Learning And Approximate Dynamic Programming For Feedback Control written by Frank L. Lewis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-28 with Technology & Engineering categories.
Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.
Optimal Control
DOWNLOAD
Author : Frank L. Lewis
language : en
Publisher: John Wiley & Sons
Release Date : 2012-03-20
Optimal Control written by Frank L. Lewis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-20 with Technology & Engineering categories.
A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Optimal Control
DOWNLOAD
Author : Mr. Rohit Manglik
language : en
Publisher: EduGorilla Publication
Release Date : 2024-07-15
Optimal Control written by Mr. Rohit Manglik and has been published by EduGorilla Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-15 with Science categories.
EduGorilla Publication is a trusted name in the education sector, committed to empowering learners with high-quality study materials and resources. Specializing in competitive exams and academic support, EduGorilla provides comprehensive and well-structured content tailored to meet the needs of students across various streams and levels.
Reinforcement Learning
DOWNLOAD
Author : Richard S. Sutton
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Reinforcement Learning written by Richard S. Sutton and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.
Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles
DOWNLOAD
Author : Draguna L. Vrabie
language : en
Publisher: IET
Release Date : 2013
Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles written by Draguna L. Vrabie and has been published by IET this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Optimal Control
DOWNLOAD
Author : Frank L. Lewis
language : en
Publisher: John Wiley & Sons
Release Date : 2012-02-01
Optimal Control written by Frank L. Lewis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-01 with Technology & Engineering categories.
A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Reinforcement Learning And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2019-07-01
Reinforcement Learning And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Computers categories.
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.