Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles

DOWNLOAD
Download Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles
DOWNLOAD
Author : Draguna L. Vrabie
language : en
Publisher: IET
Release Date : 2013
Optimal Adaptive Control And Differential Games By Reinforcement Learning Principles written by Draguna L. Vrabie and has been published by IET this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Intelligent Optimal Adaptive Control For Mechatronic Systems
DOWNLOAD
Author : Marcin Szuster
language : en
Publisher: Springer
Release Date : 2017-12-28
Intelligent Optimal Adaptive Control For Mechatronic Systems written by Marcin Szuster and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-28 with Technology & Engineering categories.
The book deals with intelligent control of mobile robots, presenting the state-of-the-art in the field, and introducing new control algorithms developed and tested by the authors. It also discusses the use of artificial intelligent methods like neural networks and neuraldynamic programming, including globalised dual-heuristic dynamic programming, for controlling wheeled robots and robotic manipulators,and compares them to classical control methods.
Handbook Of Reinforcement Learning And Control
DOWNLOAD
Author : Kyriakos G. Vamvoudakis
language : en
Publisher: Springer Nature
Release Date : 2021-06-23
Handbook Of Reinforcement Learning And Control written by Kyriakos G. Vamvoudakis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-23 with Technology & Engineering categories.
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
Reinforcement Learning And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2019-07-01
Reinforcement Learning And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Computers categories.
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.
Adaptive Dynamic Programming With Applications In Optimal Control
DOWNLOAD
Author : Derong Liu
language : en
Publisher: Springer
Release Date : 2017-01-04
Adaptive Dynamic Programming With Applications In Optimal Control written by Derong Liu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-04 with Technology & Engineering categories.
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.
Advanced Optimal Control And Applications Involving Critic Intelligence
DOWNLOAD
Author : Ding Wang
language : en
Publisher: Springer Nature
Release Date : 2023-01-21
Advanced Optimal Control And Applications Involving Critic Intelligence written by Ding Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-21 with Technology & Engineering categories.
This book intends to report new optimal control results with critic intelligence for complex discrete-time systems, which covers the novel control theory, advanced control methods, and typical applications for wastewater treatment systems. Therein, combining with artificial intelligence techniques, such as neural networks and reinforcement learning, the novel intelligent critic control theory as well as a series of advanced optimal regulation and trajectory tracking strategies are established for discrete-time nonlinear systems, followed by application verifications to complex wastewater treatment processes. Consequently, developing such kind of critic intelligence approaches is of great significance for nonlinear optimization and wastewater recycling. The book is likely to be of interest to researchers and practitioners as well as graduate students in automation, computer science, and process industry who wish to learn core principles, methods, algorithms, and applications in the field of intelligent optimal control. It is beneficial to promote the development of intelligent optimal control approaches and the construction of high-level intelligent systems.
A Course In Reinforcement Learning 2nd Edition
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2024-12-20
A Course In Reinforcement Learning 2nd Edition written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-20 with Computers categories.
This is the 2nd edition of the textbook used at the author's ASU research-oriented course on Reinforcement Learning (RL), offered in each of the last six years. Its purpose is to give an overview of the RL methodology, particularly as it relates to problems of optimal and suboptimal decision and control, as well as discrete optimization. While in this book mathematical proofs are deemphasized, there is considerable related analysis, which supports the conclusions and can be found in the author's recent RL and DP books. These books also contain additional material on off-line training of neural networks, on the use of policy gradient methods for approximation in policy space, and on aggregation.
Dynamic Programming And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2012
Dynamic Programming And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
This is the leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. Among its special features, the book 1) provides a unifying framework for sequential decision making, 2) treats simultaneously deterministic and stochastic control problems popular in modern control theory and Markovian decision popular in operations research, 3) develops the theory of deterministic optimal control problems including the Pontryagin Minimum Principle, 4) introduces recent suboptimal control and simulation-based approximation techniques (neuro-dynamic programming), which allow the practical application of dynamic programming to complex problems that involve the dual curse of large dimension and lack of an accurate mathematical model, 5) provides a comprehensive treatment of infinite horizon problems in the second volume, and an introductory treatment in the first volume The electronic version of the book includes 29 theoretical problems, with high-quality solutions, which enhance the range of coverage of the book.
Learning Based Adaptive Control
DOWNLOAD
Author : Mouhacine Benosman
language : en
Publisher: Butterworth-Heinemann
Release Date : 2016-08-02
Learning Based Adaptive Control written by Mouhacine Benosman and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-02 with Technology & Engineering categories.
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.
Control Of Complex Systems
DOWNLOAD
Author : Kyriakos Vamvoudakis
language : en
Publisher: Butterworth-Heinemann
Release Date : 2016-07-27
Control Of Complex Systems written by Kyriakos Vamvoudakis and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-27 with Technology & Engineering categories.
In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: "Introduction and Background on Control Theory, "Adaptive Control and Neuroscience, "Adaptive Learning Algorithms, "Cyber-Physical Systems and Cooperative Control, "Applications.The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete - Includes chapters from several well-known professors and researchers that showcases their recent work - Presents different state-of-the-art control approaches and theory for complex systems - Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams - Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems