Control Theory Of Infinite Dimensional Systems

DOWNLOAD
Download Control Theory Of Infinite Dimensional Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Control Theory Of Infinite Dimensional Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Control Theory Of Infinite Dimensional Systems
DOWNLOAD
Author : Joachim Kerner
language : en
Publisher: Springer Nature
Release Date : 2020-06-25
Control Theory Of Infinite Dimensional Systems written by Joachim Kerner and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-25 with Science categories.
This book presents novel results by participants of the conference “Control theory of infinite-dimensional systems” that took place in January 2018 at the FernUniversität in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. A distinguishing feature of the contributions in this volume is the particular combination of researchers from different fields in mathematics working in an interdisciplinary fashion on joint projects in mathematical system theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented.
Stability And Stabilization Of Infinite Dimensional Systems With Applications
DOWNLOAD
Author : Zheng-Hua Luo
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Stability And Stabilization Of Infinite Dimensional Systems With Applications written by Zheng-Hua Luo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
This book reports on recent achievements in stability and feedback stabilization of infinite systems. In particular emphasis is placed on second order partial differential equations, such as Euler-Bernoulli beam equations, which arise from vibration control of flexible robots arms and large space structures. Various control methods such as sensor feedback control and dynamic boundary control are applied to stabilize the equations. Many new theorems and methods are included in the book. Proof procedures of existing theorems are simplified, and detailed proofs have been given to most theorems. New results on semigroups and their stability are presented, and readers can learn several useful techniques for solving practical engineering problems. Until now, the recently obtained research results included in this book were unavailable in one volume. This self-contained book is an invaluable source of information for all those who are familiar with some basic theorems of functional analysis.
Infinite Dimensional Optimization And Control Theory
DOWNLOAD
Author : Hector O. Fattorini
language : en
Publisher: Cambridge University Press
Release Date : 2010-06-24
Infinite Dimensional Optimization And Control Theory written by Hector O. Fattorini and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-24 with Mathematics categories.
This book concerns existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. The author obtains these necessary conditions from Kuhn-Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Fattorini studies evolution partial differential equations using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. The author establishes existence of optimal controls for arbitrary control sets by means of a general theory of relaxed controls. Applications include nonlinear systems described by partial differential equations of hyperbolic and parabolic type and results on convergence of suboptimal controls.
An Introduction To Infinite Dimensional Linear Systems Theory
DOWNLOAD
Author : Ruth F. Curtain
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
An Introduction To Infinite Dimensional Linear Systems Theory written by Ruth F. Curtain and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Infinite dimensional systems is now an established area of research. Given the recent trend in systems theory and in applications towards a synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors' primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An important consideration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.
Stability Of Finite And Infinite Dimensional Systems
DOWNLOAD
Author : Michael I. Gil'
language : en
Publisher: Springer Science & Business Media
Release Date : 1998-09-30
Stability Of Finite And Infinite Dimensional Systems written by Michael I. Gil' and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-09-30 with Mathematics categories.
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.
Robust Control Of Infinite Dimensional Systems
DOWNLOAD
Author : Ciprian Foias
language : en
Publisher: Springer
Release Date : 1995-12
Robust Control Of Infinite Dimensional Systems written by Ciprian Foias and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-12 with Technology & Engineering categories.
Since its inception, H( optimization theory has become the control methodology of choice in robust feedback analysis and design. This monograph presents an operator theoretic approach to the H( control for disturbed parameter systems, that is, systems which admit infinite dimensional state spaces.
Stochastic Optimal Control In Infinite Dimension
DOWNLOAD
Author : Giorgio Fabbri
language : en
Publisher: Springer
Release Date : 2017-06-22
Stochastic Optimal Control In Infinite Dimension written by Giorgio Fabbri and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-22 with Mathematics categories.
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.
Stabilization Of Infinite Dimensional Systems
DOWNLOAD
Author : El Hassan Zerrik
language : en
Publisher: Springer Nature
Release Date : 2021-03-29
Stabilization Of Infinite Dimensional Systems written by El Hassan Zerrik and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-29 with Technology & Engineering categories.
This book deals with the stabilization issue of infinite dimensional dynamical systems both at the theoretical and applications levels. Systems theory is a branch of applied mathematics, which is interdisciplinary and develops activities in fundamental research which are at the frontier of mathematics, automation and engineering sciences. It is everywhere, innumerable and daily, and moreover is there something which is not system: it is present in medicine, commerce, economy, psychology, biological sciences, finance, architecture (construction of towers, bridges, etc.), weather forecast, robotics, automobile, aeronautics, localization systems and so on. These are the few fields of application that are useful and even essential to our society. It is a question of studying the behavior of systems and acting on their evolution. Among the most important notions in system theory, which has attracted the most attention, is stability. The existing literature on systems stability is quite important, but disparate, and the purpose of this book is to bring together in one document the essential results on the stability of infinite dimensional dynamical systems. In addition, as such systems evolve in time and space, explorations and research on their stability have been mainly focused on the whole domain in which the system evolved. The authors have strongly felt that, in this sense, important considerations are missing: those which consist in considering that the system of interest may be unstable on the whole domain, but stable in a certain region of the whole domain. This is the case in many applications ranging from engineering sciences to living science. For this reason, the authors have dedicated this book to extension of classical results on stability to the regional case. This book considers a very important issue, which is that it should be accessible to mathematicians and to graduate engineering with a minimal background in functional analysis. Moreover, for the majority of the students, this would be their only acquaintance with infinite dimensional system. Accordingly, it is organized by following increasing difficulty order. The two first chapters deal with stability and stabilization of infinite dimensional linear systems described by partial differential equations. The following chapters concern original and innovative aspects of stability and stabilization of certain classes of systems motivated by real applications, that is to say bilinear and semi-linear systems. The stability of these systems has been considered from a global and regional point of view. A particular aspect concerning the stability of the gradient has also been considered for various classes of systems. This book is aimed at students of doctoral and master’s degrees, engineering students and researchers interested in the stability of infinite dimensional dynamical systems, in various aspects.
Representation And Control Of Infinite Dimensional Systems
DOWNLOAD
Author : Alain Bensoussan
language : en
Publisher: Birkhäuser
Release Date : 1993-01-01
Representation And Control Of Infinite Dimensional Systems written by Alain Bensoussan and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-01-01 with Science categories.
The quadratic cost optimal control problem for systems described by linear ordinary differential equations occupies a central role in the study of control systems both from the theoretical and design points of view. The study of this problem over an infinite time horizon shows the beautiful interplay between optimality and the qualitative properties of systems such as controllability, observability and stability. This theory is far more difficult for infinite-dimensional systems such as systems with time delay and distributed parameter systems. In the first place, the difficulty stems from the essential unboundedness of the system operator. Secondly, when control and observation are exercised through the boundary of the domain, the operator representing the sensor and actuator are also often unbounded. The present book, in two volumes, is in some sense a self-contained account of this theory of quadratic cost optimal control for a large class of infinite-dimensional systems. Volume I deals with the theory of time evolution of controlled infinite-dimensional systems. It contains a reasonably complete account of the necessary semigroup theory and the theory of delay-differential and partial differential equations. Volume II deals with the optimal control of such systems when performance is measured via a quadratic cost. It covers recent work on the boundary control of hyperbolic systems and exact controllability. Some of the material covered here appears for the first time in book form. The book should be useful for mathematicians and theoretical engineers interested in the field of control.
Linear Port Hamiltonian Systems On Infinite Dimensional Spaces
DOWNLOAD
Author : Birgit Jacob
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-06-13
Linear Port Hamiltonian Systems On Infinite Dimensional Spaces written by Birgit Jacob and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-13 with Science categories.
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.