Convex Bodies And Algebraic Geometry

DOWNLOAD
Download Convex Bodies And Algebraic Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convex Bodies And Algebraic Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Convex Bodies And Algebraic Geometry
DOWNLOAD
Author : Tadao Oda
language : en
Publisher: Springer
Release Date : 1988
Convex Bodies And Algebraic Geometry written by Tadao Oda and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988 with Mathematics categories.
The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.
Combinatorial Convexity And Algebraic Geometry
DOWNLOAD
Author : Günter Ewald
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Combinatorial Convexity And Algebraic Geometry written by Günter Ewald and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The aim of this book is to provide an introduction for students and nonspecialists to a fascinating relation between combinatorial geometry and algebraic geometry, as it has developed during the last two decades. This relation is known as the theory of toric varieties or sometimes as torus embeddings. Chapters I-IV provide a self-contained introduction to the theory of convex poly topes and polyhedral sets and can be used independently of any applications to algebraic geometry. Chapter V forms a link between the first and second part of the book. Though its material belongs to combinatorial convexity, its definitions and theorems are motivated by toric varieties. Often they simply translate algebraic geometric facts into combinatorial language. Chapters VI-VIII introduce toric va rieties in an elementary way, but one which may not, for specialists, be the most elegant. In considering toric varieties, many of the general notions of algebraic geometry occur and they can be dealt with in a concrete way. Therefore, Part 2 of the book may also serve as an introduction to algebraic geometry and preparation for farther reaching texts about this field. The prerequisites for both parts of the book are standard facts in linear algebra (including some facts on rings and fields) and calculus. Assuming those, all proofs in Chapters I-VII are complete with one exception (IV, Theorem 5.1). In Chapter VIII we use a few additional prerequisites with references from appropriate texts.
Semidefinite Optimization And Convex Algebraic Geometry
DOWNLOAD
Author : Grigoriy Blekherman
language : en
Publisher: SIAM
Release Date : 2013-03-21
Semidefinite Optimization And Convex Algebraic Geometry written by Grigoriy Blekherman and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-21 with Mathematics categories.
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Foundations Of Convex Geometry
DOWNLOAD
Author : W. A. Coppel
language : en
Publisher: Cambridge University Press
Release Date : 1998-03-05
Foundations Of Convex Geometry written by W. A. Coppel and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-03-05 with Mathematics categories.
This book on the foundations of Euclidean geometry aims to present the subject from the point of view of present day mathematics, taking advantage of all the developments since the appearance of Hilbert's classic work. Here real affine space is characterised by a small number of axioms involving points and line segments making the treatment self-contained and thorough, many results being established under weaker hypotheses than usual. The treatment should be totally accessible for final year undergraduates and graduate students, and can also serve as an introduction to other areas of mathematics such as matroids and antimatroids, combinatorial convexity, the theory of polytopes, projective geometry and functional analysis.
Selected Papers On Number Theory And Algebraic Geometry
DOWNLOAD
Author : Katsumi Nomizu
language : en
Publisher: American Mathematical Soc.
Release Date : 1996
Selected Papers On Number Theory And Algebraic Geometry written by Katsumi Nomizu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Mathematics categories.
This book presents papers that originally appeared in the Japanese journal Sugaku from the Mathematical Society of Japan. The papers explore the relationship between number theory and algebraic geometry.
Positivity In Algebraic Geometry I
DOWNLOAD
Author : R.K. Lazarsfeld
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-08-24
Positivity In Algebraic Geometry I written by R.K. Lazarsfeld and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-24 with History categories.
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
Convex And Discrete Geometry
DOWNLOAD
Author : Peter M. Gruber
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-17
Convex And Discrete Geometry written by Peter M. Gruber and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-17 with Mathematics categories.
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other areas. The book gives an overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields.
Handbook Of Convex Geometry
DOWNLOAD
Author : Bozzano G Luisa
language : en
Publisher: Elsevier
Release Date : 2014-06-28
Handbook Of Convex Geometry written by Bozzano G Luisa and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Mathematics categories.
Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.
Selected Topics In Convex Geometry
DOWNLOAD
Author : Maria Moszynska
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-10-03
Selected Topics In Convex Geometry written by Maria Moszynska and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-10-03 with Mathematics categories.
Examines in detail those topics in convex geometry that are concerned with Euclidean space Enriched by numerous examples, illustrations, and exercises, with a good bibliography and index Requires only a basic knowledge of geometry, linear algebra, analysis, topology, and measure theory Can be used for graduates courses or seminars in convex geometry, geometric and convex combinatorics, and convex analysis and optimization
Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2024-07-14
Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.
This text gives a comprehensive introduction to the “common core” of convex geometry. Basic concepts and tools which are present in all branches of that field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a single reference for a complete introduction to convex geometry, and the content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field and various subfields. The book is suitable as a primary text for courses in convex geometry and also in discrete geometry (including polytopes). It is also appropriate for survey type courses in Banach space theory, convex analysis, differential geometry, and applications of measure theory. Solutions to all exercises are available to instructors who adopt the text for coursework. Most chapters use the same structure with the first part presenting theory and the next containing a healthy range of exercises. Some of the exercises may even be considered as short introductions to ideas which are not covered in the theory portion. Each chapter has a notes section offering a rich narrative to accompany the theory, illuminating the development of ideas, and providing overviews to the literature concerning the covered topics. In most cases, these notes bring the reader to the research front. The text includes many figures that illustrate concepts and some parts of the proofs, enabling the reader to have a better understanding of the geometric meaning of the ideas. An appendix containing basic (and geometric) measure theory collects useful information for convex geometers.