[PDF] Data Analysis And Applications 4 - eBooks Review

Data Analysis And Applications 4


Data Analysis And Applications 4
DOWNLOAD

Download Data Analysis And Applications 4 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis And Applications 4 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Analysis And Applications 4


Data Analysis And Applications 4
DOWNLOAD
Author : Andreas Makrides
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-16

Data Analysis And Applications 4 written by Andreas Makrides and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-16 with Mathematics categories.


Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into three parts: Financial Data Analysis and Methods, Statistics and Stochastic Data Analysis and Methods, and Demographic Methods and Data Analysis- providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.



Data Analysis And Applications 1


Data Analysis And Applications 1
DOWNLOAD
Author : Christos H. Skiadas
language : en
Publisher: John Wiley & Sons
Release Date : 2019-05-21

Data Analysis And Applications 1 written by Christos H. Skiadas and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-21 with Mathematics categories.


This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining.



Statistical Methods For Data Analysis In Particle Physics


Statistical Methods For Data Analysis In Particle Physics
DOWNLOAD
Author : Luca Lista
language : en
Publisher: Springer
Release Date : 2017-10-13

Statistical Methods For Data Analysis In Particle Physics written by Luca Lista and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-13 with Science categories.


This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from readers’ advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on both discoveries and upper limits, as many applications in HEP concern hypothesis testing, where the main goal is often to provide better and better limits so as to eventually be able to distinguish between competing hypotheses, or to rule out some of them altogether. Many worked-out examples will help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical concepts to actual data. This new second edition significantly expands on the original material, with more background content (e.g. the Markov Chain Monte Carlo method, best linear unbiased estimator), applications (unfolding and regularization procedures, control regions and simultaneous fits, machine learning concepts) and examples (e.g. look-elsewhere effect calculation).



Data Analysis For Omic Sciences Methods And Applications


Data Analysis For Omic Sciences Methods And Applications
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2018-09-22

Data Analysis For Omic Sciences Methods And Applications written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-22 with Science categories.


Data Analysis for Omic Sciences: Methods and Applications, Volume 82, shows how these types of challenging datasets can be analyzed. Examples of applications in real environmental, clinical and food analysis cases help readers disseminate these approaches. Chapters of note include an Introduction to Data Analysis Relevance in the Omics Era, Omics Experimental Design and Data Acquisition, Microarrays Data, Analysis of High-Throughput RNA Sequencing Data, Analysis of High-Throughput DNA Bisulfite Sequencing Data, Data Quality Assessment in Untargeted LC-MS Metabolomic, Data Normalization and Scaling, Metabolomics Data Preprocessing, and more. - Presents the best reference book for omics data analysis - Provides a review of the latest trends in transcriptomics and metabolomics data analysis tools - Includes examples of applications in research fields, such as environmental, biomedical and food analysis



Data Analysis Machine Learning And Applications


Data Analysis Machine Learning And Applications
DOWNLOAD
Author : Christine Preisach
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-04-13

Data Analysis Machine Learning And Applications written by Christine Preisach and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-13 with Computers categories.


Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.



Big Data Analysis For Green Computing


Big Data Analysis For Green Computing
DOWNLOAD
Author : Rohit Sharma
language : en
Publisher: CRC Press
Release Date : 2021-10-28

Big Data Analysis For Green Computing written by Rohit Sharma and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-28 with Computers categories.


This book focuses on big data in business intelligence, data management, machine learning, cloud computing, and smart cities. It also provides an interdisciplinary platform to present and discuss recent innovations, trends, and concerns in the fields of big data and analytics. Big Data Analysis for Green Computing: Concepts and Applications presents the latest technologies and covers the major challenges, issues, and advances of big data and data analytics in green computing. It explores basic as well as high-level concepts. It also includes the use of machine learning using big data and discusses advanced system implementation for smart cities. The book is intended for business and management educators, management researchers, doctoral scholars, university professors, policymakers, and higher academic research organizations.



Big And Complex Data Analysis


Big And Complex Data Analysis
DOWNLOAD
Author : S. Ejaz Ahmed
language : en
Publisher: Springer
Release Date : 2017-03-21

Big And Complex Data Analysis written by S. Ejaz Ahmed and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-21 with Mathematics categories.


This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.



Financial Data Analytics


Financial Data Analytics
DOWNLOAD
Author : Sinem Derindere Köseoğlu
language : en
Publisher: Springer Nature
Release Date : 2022-04-25

Financial Data Analytics written by Sinem Derindere Köseoğlu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-25 with Business & Economics categories.


​This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.



Compositional Data Analysis


Compositional Data Analysis
DOWNLOAD
Author : Vera Pawlowsky-Glahn
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-19

Compositional Data Analysis written by Vera Pawlowsky-Glahn and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-19 with Mathematics categories.


It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.



Deep Learning In Data Analytics


Deep Learning In Data Analytics
DOWNLOAD
Author : Debi Prasanna Acharjya
language : en
Publisher: Springer Nature
Release Date : 2021-08-11

Deep Learning In Data Analytics written by Debi Prasanna Acharjya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with Technology & Engineering categories.


This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.