Data Analysis And Data Mining

DOWNLOAD
Download Data Analysis And Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis And Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Handbook Of Statistical Analysis And Data Mining Applications
DOWNLOAD
Author : Ken Yale
language : en
Publisher: Elsevier
Release Date : 2017-11-09
Handbook Of Statistical Analysis And Data Mining Applications written by Ken Yale and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-09 with Mathematics categories.
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Data Mining And Analysis
DOWNLOAD
Author : Mohammed J. Zaki
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-12
Data Mining And Analysis written by Mohammed J. Zaki and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Computers categories.
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Data Analysis And Data Mining
DOWNLOAD
Author : Adelchi Azzalini
language : en
Publisher: Oxford University Press
Release Date : 2012-03-14
Data Analysis And Data Mining written by Adelchi Azzalini and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-14 with Business & Economics categories.
An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.
Introduction To Data Mining And Analytics
DOWNLOAD
Author : Kris Jamsa
language : en
Publisher: Jones & Bartlett Learning
Release Date : 2020-02-03
Introduction To Data Mining And Analytics written by Kris Jamsa and has been published by Jones & Bartlett Learning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-03 with Computers categories.
Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field. The exponentially increasing rate at which data is generated creates a corresponding need for professionals who can effectively handle its storage, analysis, and translation.
Making Sense Of Data I
DOWNLOAD
Author : Glenn J. Myatt
language : en
Publisher: John Wiley & Sons
Release Date : 2014-07-02
Making Sense Of Data I written by Glenn J. Myatt and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-02 with Mathematics categories.
Praise for the First Edition “...a well-written book on data analysis and data mining that provides an excellent foundation...” —CHOICE “This is a must-read book for learning practical statistics and data analysis...” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available TraceisTM software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.
Statistical And Machine Learning Data Mining
DOWNLOAD
Author : Bruce Ratner
language : en
Publisher: CRC Press
Release Date : 2012-02-28
Statistical And Machine Learning Data Mining written by Bruce Ratner and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-28 with Business & Economics categories.
The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Data Mining And Predictive Analytics
DOWNLOAD
Author : Daniel T. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2015-03-16
Data Mining And Predictive Analytics written by Daniel T. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-16 with Computers categories.
Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Data Mining Approaches For Big Data And Sentiment Analysis In Social Media
DOWNLOAD
Author : Brij Gupta
language : en
Publisher:
Release Date : 2021
Data Mining Approaches For Big Data And Sentiment Analysis In Social Media written by Brij Gupta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Big data categories.
"This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--
Java Data Analysis
DOWNLOAD
Author : John R. Hubbard
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-19
Java Data Analysis written by John R. Hubbard and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Computers categories.
Get the most out of the popular Java libraries and tools to perform efficient data analysis About This Book Get your basics right for data analysis with Java and make sense of your data through effective visualizations. Use various Java APIs and tools such as Rapidminer and WEKA for effective data analysis and machine learning. This is your companion to understanding and implementing a solid data analysis solution using Java Who This Book Is For If you are a student or Java developer or a budding data scientist who wishes to learn the fundamentals of data analysis and learn to perform data analysis with Java, this book is for you. Some familiarity with elementary statistics and relational databases will be helpful but is not mandatory, to get the most out of this book. A firm understanding of Java is required. What You Will Learn Develop Java programs that analyze data sets of nearly any size, including text Implement important machine learning algorithms such as regression, classification, and clustering Interface with and apply standard open source Java libraries and APIs to analyze and visualize data Process data from both relational and non-relational databases and from time-series data Employ Java tools to visualize data in various forms Understand multimedia data analysis algorithms and implement them in Java. In Detail Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the aim of discovering useful information. Java is one of the most popular languages to perform your data analysis tasks. This book will help you learn the tools and techniques in Java to conduct data analysis without any hassle. After getting a quick overview of what data science is and the steps involved in the process, you'll learn the statistical data analysis techniques and implement them using the popular Java APIs and libraries. Through practical examples, you will also learn the machine learning concepts such as classification and regression. In the process, you'll familiarize yourself with tools such as Rapidminer and WEKA and see how these Java-based tools can be used effectively for analysis. You will also learn how to analyze text and other types of multimedia. Learn to work with relational, NoSQL, and time-series data. This book will also show you how you can utilize different Java-based libraries to create insightful and easy to understand plots and graphs. By the end of this book, you will have a solid understanding of the various data analysis techniques, and how to implement them using Java. Style and approach The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy-to-follow examples, this book will turn you into an ace data analyst in no time.
Predictive Analytics And Data Mining
DOWNLOAD
Author : Vijay Kotu
language : en
Publisher: Morgan Kaufmann
Release Date : 2014-11-27
Predictive Analytics And Data Mining written by Vijay Kotu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Computers categories.
Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples