[PDF] Data Engineering For Ai Ml Pipelines - eBooks Review

Data Engineering For Ai Ml Pipelines


Data Engineering For Ai Ml Pipelines
DOWNLOAD

Download Data Engineering For Ai Ml Pipelines PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Engineering For Ai Ml Pipelines book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Engineering For Ai Ml Pipelines


Data Engineering For Ai Ml Pipelines
DOWNLOAD
Author : Venkata Karthik Penikalapati
language : en
Publisher: BPB Publications
Release Date : 2024-10-18

Data Engineering For Ai Ml Pipelines written by Venkata Karthik Penikalapati and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-18 with Computers categories.


DESCRIPTION Data engineering is the art of building and managing data pipelines that enable efficient data flow for AI/ML projects. This book serves as a comprehensive guide to data engineering for AI/ML systems, equipping you with the knowledge and skills to create robust and scalable data infrastructure. This book covers everything from foundational concepts to advanced techniques. It begins by introducing the role of data engineering in AI/ML, followed by exploring the lifecycle of data, from data generation and collection to storage and management. Readers will learn how to design robust data pipelines, transform data, and deploy AI/ML models effectively for real-world applications. The book also explains security, privacy, and compliance, ensuring responsible data management. Finally, it explores future trends, including automation, real-time data processing, and advanced architectures, providing a forward-looking perspective on the evolution of data engineering. By the end of this book, you will have a deep understanding of the principles and practices of data engineering for AI/ML. You will be able to design and implement efficient data pipelines, select appropriate technologies, ensure data quality and security, and leverage data for building successful AI/ML models. KEY FEATURES ● Comprehensive guide to building scalable AI/ML data engineering pipelines. ● Practical insights into data collection, storage, processing, and analysis. ● Emphasis on data security, privacy, and emerging trends in AI/ML. WHAT YOU WILL LEARN ● Architect scalable data solutions for AI/ML-driven applications. ● Design and implement efficient data pipelines for machine learning. ● Ensure data security and privacy in AI/ML systems. ● Leverage emerging technologies in data engineering for AI/ML. ● Optimize data transformation processes for enhanced model performance. WHO THIS BOOK IS FOR This book is ideal for software engineers, ML practitioners, IT professionals, and students wanting to master data pipelines for AI/ML. It is also valuable for developers and system architects aiming to expand their knowledge of data-driven technologies. TABLE OF CONTENTS 1. Introduction to Data Engineering for AI/ML 2. Lifecycle of AI/ML Data Engineering 3. Architecting Data Solutions for AI/ML 4. Technology Selection in AI/ML Data Engineering 5. Data Generation and Collection for AI/ML 6. Data Storage and Management in AI/ML 7. Data Ingestion and Preparation for ML 8. Transforming and Processing Data for AI/ML 9. Model Deployment and Data Serving 10. Security and Privacy in AI/ML Data Engineering 11. Emerging Trends and Future Direction



Building Machine Learning Pipelines


Building Machine Learning Pipelines
DOWNLOAD
Author : Hannes Hapke
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-07-13

Building Machine Learning Pipelines written by Hannes Hapke and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-13 with Computers categories.


Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques



Data Pipelines Pocket Reference


Data Pipelines Pocket Reference
DOWNLOAD
Author : James Densmore
language : en
Publisher: O'Reilly Media
Release Date : 2021-02-10

Data Pipelines Pocket Reference written by James Densmore and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Computers categories.


Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting



Data Science On Aws


Data Science On Aws
DOWNLOAD
Author : Chris Fregly
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-04-07

Data Science On Aws written by Chris Fregly and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-07 with Computers categories.


With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more



Data Engineering With Apache Spark Delta Lake And Lakehouse


Data Engineering With Apache Spark Delta Lake And Lakehouse
DOWNLOAD
Author : Manoj Kukreja
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-10-22

Data Engineering With Apache Spark Delta Lake And Lakehouse written by Manoj Kukreja and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-22 with Computers categories.


Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.



Data Engineering For Machine Learning Pipelines


Data Engineering For Machine Learning Pipelines
DOWNLOAD
Author : Pavan Kumar Narayanan
language : en
Publisher: Springer Nature
Release Date : 2024-09-27

Data Engineering For Machine Learning Pipelines written by Pavan Kumar Narayanan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-27 with Computers categories.


This book covers modern data engineering functions and important Python libraries, to help you develop state-of-the-art ML pipelines and integration code. The book begins by explaining data analytics and transformation, delving into the Pandas library, its capabilities, and nuances. It then explores emerging libraries such as Polars and CuDF, providing insights into GPU-based computing and cutting-edge data manipulation techniques. The text discusses the importance of data validation in engineering processes, introducing tools such as Great Expectations and Pandera to ensure data quality and reliability. The book delves into API design and development, with a specific focus on leveraging the power of FastAPI. It covers authentication, authorization, and real-world applications, enabling you to construct efficient and secure APIs using FastAPI. Also explored is concurrency in data engineering, examining Dask's capabilities from basic setup to crafting advanced machine learning pipelines. The book includes development and delivery of data engineering pipelines using leading cloud platforms such as AWS, Google Cloud, and Microsoft Azure. The concluding chapters concentrate on real-time and streaming data engineering pipelines, emphasizing Apache Kafka and workflow orchestration in data engineering. Workflow tools such as Airflow and Prefect are introduced to seamlessly manage and automate complex data workflows. What sets this book apart is its blend of theoretical knowledge and practical application, a structured path from basic to advanced concepts, and insights into using state-of-the-art tools. With this book, you gain access to cutting-edge techniques and insights that are reshaping the industry. This book is not just an educational tool. It is a career catalyst, and an investment in your future as a data engineering expert, poised to meet the challenges of today's data-driven world. What You Will Learn Elevate your data wrangling jobs by utilizing the power of both CPU and GPU computing, and learn to process data using Pandas 2.0, Polars, and CuDF at unprecedented speeds Design data validation pipelines, construct efficient data service APIs, develop real-time streaming pipelines and master the art of workflow orchestration to streamline your engineering projects Leverage concurrent programming to develop machine learning pipelines and get hands-on experience in development and deployment of machine learning pipelines across AWS, GCP, and Azure Who This Book Is For Data analysts, data engineers, data scientists, machine learning engineers, and MLOps specialists



Mastering Data Engineering And Analytics With Databricks


Mastering Data Engineering And Analytics With Databricks
DOWNLOAD
Author : Manoj Kumar
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2024-09-30

Mastering Data Engineering And Analytics With Databricks written by Manoj Kumar and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-30 with Computers categories.


TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index



Data Engineering Fundamentals


Data Engineering Fundamentals
DOWNLOAD
Author : Zhaolong Liu
language : en
Publisher: BPB Publications
Release Date : 2025-03-30

Data Engineering Fundamentals written by Zhaolong Liu and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-30 with Computers categories.


DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for anyone looking to build robust data pipelines and extract valuable insights. This book simplifies complex concepts and provides a clear pathway to understanding the core principles that power modern data solutions. It bridges the gap between raw data and actionable intelligence, making data engineering accessible to everyone. This book walks you through the entire data engineering lifecycle. Starting with foundational concepts and data ingestion from diverse sources, you will learn how to build efficient data lakes and warehouses. You will learn data transformation using tools like Apache Spark and the orchestration of data workflows with platforms like Airflow and Argo Workflow. Crucial aspects of data quality, governance, scalability, and performance monitoring are thoroughly covered, ensuring you understand how to maintain reliable and efficient data systems. Real-world use cases across industries like e-commerce, finance, and government illustrate practical applications, while a final section explores emerging trends such as AI integration and cloud advancements. By the end of this book, you will have a solid foundation in data engineering, along with practical skills to help enhance your career. You will be equipped to design, build, and maintain data pipelines, transforming raw data into meaningful insights. WHAT YOU WILL LEARN ● Understand data engineering base concepts and build scalable solutions. ● Master data storage, ingestion, and transformation. ● Orchestrates data workflows and automates pipelines for efficiency. ● Ensure data quality, governance, and security compliance. ● Monitor, optimize, and scale data solutions effectively. ● Explore real-world use cases and future data trends. WHO THIS BOOK IS FOR This book is for aspiring data engineers, analysts, and developers seeking a foundational understanding of data engineering. Whether you are a beginner or looking to deepen your expertise, this book provides you with the knowledge and tools to succeed in today’s data engineering challenges. TABLE OF CONTENTS 1. Understanding Data Engineering 2. Data Ingestion and Acquisition 3. Data Storage and Management 4. Data Transformation and Processing 5. Data Orchestration and Workflows 6. Data Governance Principles 7. Scaling Data Solutions 8. Monitoring and Performance 9. Real-world Data Engineering Use Cases 10. Future Trends in Data Engineering



Mastering Microsoft Fabric Unified Data Engineering Governance And Artificial Intelligence In The Cloud


Mastering Microsoft Fabric Unified Data Engineering Governance And Artificial Intelligence In The Cloud
DOWNLOAD
Author :
language : en
Publisher: Deep Science Publishing
Release Date : 2025-07-12

Mastering Microsoft Fabric Unified Data Engineering Governance And Artificial Intelligence In The Cloud written by and has been published by Deep Science Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-12 with Computers categories.


The development of cloud platforms has changed how organizations manage data, implement governance, and incorporate artificial intelligence into business processes. Microsoft Fabric combines data engineering, governance, real-time analytics, and AI into a single, scalable ecosystem. This book, Mastering Microsoft Fabric: Unified Data Engineering, Governance, and AI in the Cloud, is designed for professionals, researchers, and architects interested in Microsoft Fabric. It covers real-world use cases, architectural patterns, and practical implementations, this guide explores how to build modern, governed, and intelligent data systems that meet the demands of today’s dynamic digital environments. Drawing on extensive experience in databases, cybersecurity, and AI, I have written this book to address the divide between theoretical concept and practical implementation. This work focuses on role- and rule-based access control, multi-tenant data governance, AI integration, and secure data pipelines, all critical pillars in modern enterprise architecture. This book functions as both a technical guide and a strategic reference, outlining how Microsoft Fabric is influencing cloud-native data engineering and decision-making. It aims to inform readers about compliance focused architectures and servers as a resource for professionals working within cloud-first and AI-driven environments.



Practical Data Engineering For Cloud Migration From Legacy To Scalable Analytics 2025


Practical Data Engineering For Cloud Migration From Legacy To Scalable Analytics 2025
DOWNLOAD
Author : Author:1- Sanchee Kaushik, Author:1- Prof. Dr. Dyuti Banerjee
language : en
Publisher: YASHITA PRAKASHAN PRIVATE LIMITED
Release Date :

Practical Data Engineering For Cloud Migration From Legacy To Scalable Analytics 2025 written by Author:1- Sanchee Kaushik, Author:1- Prof. Dr. Dyuti Banerjee and has been published by YASHITA PRAKASHAN PRIVATE LIMITED this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


PREFACE The exponential growth of data in today’s digital landscape has reshaped how businesses operate, forcing organizations to rethink their data strategies and technologies. As more companies embrace cloud computing, migrating legacy data systems to the cloud has become a critical step towards achieving scalability, flexibility, and agility in data management. “Practical Data Engineering for Cloud Migration: From Legacy to Scalable Analytics” serves as a comprehensive guide for professionals, data engineers, and business leaders navigating the complex but transformative journey of migrating legacy data systems to modern cloud architectures. The cloud has emerged as the cornerstone of modern data infrastructure, offering unparalleled scalability, on-demand resources, and advanced analytics capabilities. However, the transition from legacy systems to cloud-based architectures is often fraught with challenges—ranging from data compatibility issues to migration complexities, security concerns, and the need to ensure that the newly integrated systems perform optimally. This book bridges that gap by providing practical, real-world solutions for overcoming these challenges while focusing on achieving a scalable and high-performing data environment in the cloud. This book is designed to guide readers through every aspect of the cloud migration process. It starts by addressing the core principles of data engineering, data modeling, and the basics of cloud environments. From there, we delve into the specific challenges and best practices for migrating legacy data systems, transitioning databases to the cloud, optimizing data pipelines, and leveraging modern tools and platforms for scalable analytics. The chapters provide step-by-step guidance, strategies for handling large-scale data migrations, and case studies that highlight the successes and lessons learned from real-world cloud migration initiatives. Throughout this book, we emphasize the importance of ensuring that cloud migration is not just a technical task but a strategic business decision. By providing insights into how cloud migration can unlock new opportunities for data-driven innovation, this book aims to empower organizations to make informed decisions, harness the full potential of their data, and move towards more efficient and scalable cloud-native analytics solutions. Whether you are an experienced data engineer tasked with migrating legacy systems or a business leader looking to understand the strategic value of cloud data architectures, this book will provide you with the knowledge and tools necessary to execute a successful cloud migration and set your organization up for future growth. Authors