Data Mining Algorithms In C

DOWNLOAD
Download Data Mining Algorithms In C PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining Algorithms In C book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Mining Algorithms In C
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2017-12-15
Data Mining Algorithms In C written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-15 with Computers categories.
Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What You'll Learn Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your data Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data Work with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methods See how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data Plot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high Who This Book Is For Anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Modern Data Mining Algorithms In C And Cuda C
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2020-06-05
Modern Data Mining Algorithms In C And Cuda C written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-05 with Computers categories.
Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are: Forward selection component analysis Local feature selection Linking features and a target with a hidden Markov model Improvements on traditional stepwise selection Nominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it. What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets. Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is For Intermediate to advanced data science programmers and analysts.
Privacy Preserving Data Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-10
Privacy Preserving Data Mining written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-10 with Computers categories.
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions. Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.
Data Mining Algorithms In C
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-05-06
Data Mining Algorithms In C written by Timothy Masters and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-06 with categories.
In my decades of custom programming and consultation, I have explored diverse applications, including automated analysis of high-altitude photographs, automated medical diagnosis, realtime detection of threatening military vehicles, and automated trading of financial markets. A common thread in all of these applications is that I was faced with a multitude of observed or computed variables, and my task involved finding and analyzing relationships among these variables. As a result, I have accumulated a wealth of algorithms for doing so. This book presents theoretical and intuitive justifications, along with highly commented source code, for my favorite data-mining techniques. This book makes no pretense of being 'complete' in any manner whatsoever. Please do not be annoyed if your own favorite techniques did not make my cut, or if the book ignores some popular standard techniques. These are simply the algorithms that I have found most useful in my own work over the years. Some of them are venerable old techniques such as the use of maximum-likelihood factor analysis for determining the degree to which variables contain unique information, versus being redundant due to hidden common factors impacting several variables. Some of them are powerful modern techniques, such as Combinatorially Symmetric Cross Validation for determining if a model is hampered by overfitting, or Feature Weighting as Regularized Energy-Based Learning for ranking variables in predictive power when there are too few training cases to employ traditional methods. Some of them are (I believe) my own invention, such as a method for clustering variables in the restricted context of a subspace of interest, and visual display of anomalous regions in which joint and marginal densities conflict, or in which contribution to mutual information is concentrated. But all of them share a great quality: I have found them to be exceptionally useful in my own data-mining endeavors. I suspect that you will as well.
Data Mining Algorithms In C
DOWNLOAD
Author : Timothy Masters
language : en
Publisher:
Release Date : 2018
Data Mining Algorithms In C written by Timothy Masters and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with C++ (Computer program language) categories.
Find the various relationships among variables that can be present in big data as well as other data sets. This book also covers information entropy, permutation tests, combinatorics, predictor selections, and eigenvalues to give you a well-rounded view of data mining and algorithms in C++. Furthermore, 䡴ta Mining Algorithms in C++鮣ludes classic techniques that are widely available in standard statistical packages, such as maximum likelihood factor analysis and varimax rotation. After reading and using this book, you'll come away with many code samples and routines that can be repurposed into your own data mining tools and algorithms toolbox. This will allow you to integrate these techniques in your various data and analysis projects. ٯu will: Discover useful data mining techniques and algorithms using the C++ programming language Carry out permutation tests Work with the various relationships and screening types for these relationships Master predictor selections Use the DATAMINE program#xE000.
Data Mining Algorithms
DOWNLOAD
Author : Pawel Cichosz
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-27
Data Mining Algorithms written by Pawel Cichosz and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-27 with Mathematics categories.
Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Mining Text Data
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-03
Mining Text Data written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-03 with Computers categories.
Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
Automating The Design Of Data Mining Algorithms
DOWNLOAD
Author : Gisele L. Pappa
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-27
Automating The Design Of Data Mining Algorithms written by Gisele L. Pappa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-27 with Computers categories.
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.
The Top Ten Algorithms In Data Mining
DOWNLOAD
Author : Xindong Wu
language : en
Publisher: CRC Press
Release Date : 2009-04-09
The Top Ten Algorithms In Data Mining written by Xindong Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-09 with Business & Economics categories.
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm. The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses. By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
Data Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2015-04-13
Data Mining written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-13 with Computers categories.
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago