Data Mining Algorithms

DOWNLOAD
Download Data Mining Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Top Ten Algorithms In Data Mining
DOWNLOAD
Author : Xindong Wu
language : en
Publisher: CRC Press
Release Date : 2009-04-09
The Top Ten Algorithms In Data Mining written by Xindong Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-09 with Business & Economics categories.
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm. The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses. By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
Introduction To Algorithms For Data Mining And Machine Learning
DOWNLOAD
Author : Xin-She Yang
language : en
Publisher: Academic Press
Release Date : 2019-06-17
Introduction To Algorithms For Data Mining And Machine Learning written by Xin-She Yang and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-17 with Mathematics categories.
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
Data Mining Algorithms In C
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2017-12-15
Data Mining Algorithms In C written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-15 with Computers categories.
Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What You'll Learn Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your data Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data Work with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methods See how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data Plot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high Who This Book Is For Anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Data Mining Algorithms
DOWNLOAD
Author : Pawel Cichosz
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-27
Data Mining Algorithms written by Pawel Cichosz and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-27 with Mathematics categories.
Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Stream Data Mining Algorithms And Their Probabilistic Properties
DOWNLOAD
Author : Leszek Rutkowski
language : en
Publisher: Springer
Release Date : 2019-03-16
Stream Data Mining Algorithms And Their Probabilistic Properties written by Leszek Rutkowski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-16 with Computers categories.
This book presents a unique approach to stream data mining. Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified. First, it describes how to adapt static decision trees to accommodate data streams; in this regard, new splitting criteria are developed to guarantee that they are asymptotically equivalent to the classical batch tree. Moreover, new decision trees are designed, leading to the original concept of hybrid trees. In turn, nonparametric techniques based on Parzen kernels and orthogonal series are employed to address concept drift in the problem of non-stationary regressions and classification in a time-varying environment. Lastly, an extremely challenging problem that involves designing ensembles and automatically choosing their sizes is described and solved. Given its scope, the book is intended for a professional audience of researchers and practitioners who dealwith stream data, e.g. in telecommunication, banking, and sensor networks.
Data Mining And Analysis
DOWNLOAD
Author : Mohammed J. Zaki
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-12
Data Mining And Analysis written by Mohammed J. Zaki and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Computers categories.
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Pattern Recognition Algorithms For Data Mining
DOWNLOAD
Author : Sankar K. Pal
language : en
Publisher: CRC Press
Release Date : 2004-05-27
Pattern Recognition Algorithms For Data Mining written by Sankar K. Pal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-27 with Computers categories.
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
Data Mining For Association Rules And Sequential Patterns
DOWNLOAD
Author : Jean-Marc Adamo
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Data Mining For Association Rules And Sequential Patterns written by Jean-Marc Adamo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Data mining includes a wide range of activities such as classification, clustering, similarity analysis, summarization, association rule and sequential pattern discovery, and so forth. The book focuses on the last two previously listed activities. It provides a unified presentation of algorithms for association rule and sequential pattern discovery. For both mining problems, the presentation relies on the lattice structure of the search space. All algorithms are built as processes running on this structure. Proving their properties takes advantage of the mathematical properties of the structure. Part of the motivation for writing this book was postgraduate teaching. One of the main intentions was to make the book a suitable support for the clear exposition of problems and algorithms as well as a sound base for further discussion and investigation. Since the book only assumes elementary mathematical knowledge in the domains of lattices, combinatorial optimization, probability calculus, and statistics, it is fit for use by undergraduate students as well. The algorithms are described in a C-like pseudo programming language. The computations are shown in great detail. This makes the book also fit for use by implementers: computer scientists in many domains as well as industry engineers.
Privacy Preserving Data Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-10
Privacy Preserving Data Mining written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-10 with Computers categories.
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions. Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.
Data Mining Concepts And Techniques
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2011-06-09
Data Mining Concepts And Techniques written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Computers categories.
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data