Data Mining For Association Rules And Sequential Patterns

DOWNLOAD
Download Data Mining For Association Rules And Sequential Patterns PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining For Association Rules And Sequential Patterns book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Mining For Association Rules And Sequential Patterns
DOWNLOAD
Author : Jean-Marc Adamo
language : en
Publisher: Springer Science & Business Media
Release Date : 2001
Data Mining For Association Rules And Sequential Patterns written by Jean-Marc Adamo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Computers categories.
Recent advances in data collection, storage technologies, and computing power have made it possible for companies, government agencies and scientific laboratories to keep and manipulate vast amounts of data relating to their activities. This state-of-the-art monograph discusses essential algorithms for sophisticated data mining methods used with large-scale databases, focusing on two key topics: association rules and sequential pattern discovery. This will be an essential book for practitioners and professionals in computer science and computer engineering.
Data Mining For Association Rules And Sequential Patterns
DOWNLOAD
Author : Jean-Marc Adamo
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Data Mining For Association Rules And Sequential Patterns written by Jean-Marc Adamo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Data mining includes a wide range of activities such as classification, clustering, similarity analysis, summarization, association rule and sequential pattern discovery, and so forth. The book focuses on the last two previously listed activities. It provides a unified presentation of algorithms for association rule and sequential pattern discovery. For both mining problems, the presentation relies on the lattice structure of the search space. All algorithms are built as processes running on this structure. Proving their properties takes advantage of the mathematical properties of the structure. Part of the motivation for writing this book was postgraduate teaching. One of the main intentions was to make the book a suitable support for the clear exposition of problems and algorithms as well as a sound base for further discussion and investigation. Since the book only assumes elementary mathematical knowledge in the domains of lattices, combinatorial optimization, probability calculus, and statistics, it is fit for use by undergraduate students as well. The algorithms are described in a C-like pseudo programming language. The computations are shown in great detail. This makes the book also fit for use by implementers: computer scientists in many domains as well as industry engineers.
Frequent Pattern Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2014-08-29
Frequent Pattern Mining written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-29 with Computers categories.
This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.
Web Data Mining
DOWNLOAD
Author : Bing Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-25
Web Data Mining written by Bing Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-25 with Computers categories.
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
Relational Data Mining
DOWNLOAD
Author : Saso Dzeroski
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-08
Relational Data Mining written by Saso Dzeroski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08 with Business & Economics categories.
As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
High Utility Pattern Mining
DOWNLOAD
Author : Philippe Fournier-Viger
language : en
Publisher: Springer
Release Date : 2019-01-18
High Utility Pattern Mining written by Philippe Fournier-Viger and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-18 with Computers categories.
This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data. The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.
R Mining Spatial Text Web And Social Media Data
DOWNLOAD
Author : Bater Makhabel
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-19
R Mining Spatial Text Web And Social Media Data written by Bater Makhabel and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-19 with Computers categories.
Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands-on experience of generating insights from social media data. You will get detailed instructions on how to obtain, process, and analyze a variety of socially-generated data while providing a theoretical background to accurately interpret your findings. You will be shown R code and examples of data that can be used as a springboard as you get the chance to undertake your own analyses of business, social, or political data. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Learning Data Mining with R by Bater Makhabel R Data Mining Blueprints by Pradeepta Mishra Social Media Mining with R by Nathan Danneman and Richard Heimann Style and approach A complete package with which will take you from the basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining.
High Performance Parallel Database Processing And Grid Databases
DOWNLOAD
Author : David Taniar
language : en
Publisher: John Wiley & Sons
Release Date : 2008-09-17
High Performance Parallel Database Processing And Grid Databases written by David Taniar and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-17 with Computers categories.
The latest techniques and principles of parallel and grid database processing The growth in grid databases, coupled with the utility of parallel query processing, presents an important opportunity to understand and utilize high-performance parallel database processing within a major database management system (DBMS). This important new book provides readers with a fundamental understanding of parallelism in data-intensive applications, and demonstrates how to develop faster capabilities to support them. It presents a balanced treatment of the theoretical and practical aspects of high-performance databases to demonstrate how parallel query is executed in a DBMS, including concepts, algorithms, analytical models, and grid transactions. High-Performance Parallel Database Processing and Grid Databases serves as a valuable resource for researchers working in parallel databases and for practitioners interested in building a high-performance database. It is also a much-needed, self-contained textbook for database courses at the advanced undergraduate and graduate levels.
Advances In Knowledge Discovery And Data Mining
DOWNLOAD
Author : Thanaruk Theeramunkong
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-20
Advances In Knowledge Discovery And Data Mining written by Thanaruk Theeramunkong and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-20 with Computers categories.
This book constitutes the refereed proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2009, held in Bangkok, Thailand, in April 2009. The 39 revised full papers and 73 revised short papers presented together with 3 keynote talks were carefully reviewed and selected from 338 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scientific discovery, data visualization, causal induction, and knowledge-based systems.
Web Data Mining
DOWNLOAD
Author : Bing Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-30
Web Data Mining written by Bing Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-30 with Computers categories.
This book provides a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered. The book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Internet support with lecture slides and project problems is available online.