[PDF] Data Mining In Time Series And Streaming Databases - eBooks Review

Data Mining In Time Series And Streaming Databases


Data Mining In Time Series And Streaming Databases
DOWNLOAD

Download Data Mining In Time Series And Streaming Databases PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining In Time Series And Streaming Databases book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Mining In Time Series And Streaming Databases


Data Mining In Time Series And Streaming Databases
DOWNLOAD
Author : Mark Last
language : en
Publisher: World Scientific
Release Date : 2018-01-12

Data Mining In Time Series And Streaming Databases written by Mark Last and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-12 with Computers categories.


This compendium is a completely revised version of an earlier book, Data Mining in Time Series Databases, by the same editors. It provides a unique collection of new articles written by leading experts that account for the latest developments in the field of time series and data stream mining.The emerging topics covered by the book include weightless neural modeling for mining data streams, using ensemble classifiers for imbalanced and evolving data streams, document stream mining with active learning, and many more. In particular, it addresses the domain of streaming data, which has recently become one of the emerging topics in Data Science, Big Data, and related areas. Existing titles do not provide sufficient information on this topic.



Data Streams


Data Streams
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-03

Data Streams written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-03 with Computers categories.


This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mining aspects of data streams comprehensively: each contributed chapter contains a survey on the topic, the key ideas in the field for that particular topic, and future research directions. The book is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for advanced-level students in computer science.



Data Stream Management


Data Stream Management
DOWNLOAD
Author : Minos Garofalakis
language : en
Publisher: Springer
Release Date : 2016-07-11

Data Stream Management written by Minos Garofalakis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-11 with Computers categories.


This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains. A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processing algorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field. The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.



Data Mining Southeast Asia Edition


Data Mining Southeast Asia Edition
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2006-04-06

Data Mining Southeast Asia Edition written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Computers categories.


Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data— including stream data, sequence data, graph structured data, social network data, and multi-relational data. - A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data - Updates that incorporate input from readers, changes in the field, and more material on statistics and machine learning - Dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects - Complete classroom support for instructors at www.mkp.com/datamining2e companion site



Data Mining In Time Series Databases


Data Mining In Time Series Databases
DOWNLOAD
Author : Mark Last
language : en
Publisher: World Scientific
Release Date : 2004

Data Mining In Time Series Databases written by Mark Last and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. Contents: A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences (H M Lie); Indexing of Compressed Time Series (E Fink & K Pratt); Boosting Interval-Based Literal: Variable Length and Early Classification (J J Rodriguez Diez); Segmenting Time Series: A Survey and Novel Approach (E Keogh et al.); Indexing Similar Time Series under Conditions of Noise (M Vlachos et al.); Classification of Events in Time Series of Graphs (H Bunke & M Kraetzl); Median Strings--A Review (X Jiang et al.); Change Detection in Classfication Models of Data Mining (G Zeira et al.). Readership: Graduate students, reseachers and practitioners in the fields of data mining, machine learning, databases and statistics.



Machine Learning For Data Streams


Machine Learning For Data Streams
DOWNLOAD
Author : Albert Bifet
language : en
Publisher: MIT Press
Release Date : 2018-03-16

Machine Learning For Data Streams written by Albert Bifet and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-16 with Computers categories.


A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.



Data Streams


Data Streams
DOWNLOAD
Author : S. Muthukrishnan
language : en
Publisher: Now Publishers Inc
Release Date : 2005

Data Streams written by S. Muthukrishnan and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computers categories.


In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.



Real Time Analytics


Real Time Analytics
DOWNLOAD
Author : Byron Ellis
language : en
Publisher: John Wiley & Sons
Release Date : 2014-06-23

Real Time Analytics written by Byron Ellis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-23 with Computers categories.


Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.



Knowledge Discovery From Data Streams


Knowledge Discovery From Data Streams
DOWNLOAD
Author : Joao Gama
language : en
Publisher: CRC Press
Release Date : 2010-05-25

Knowledge Discovery From Data Streams written by Joao Gama and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-25 with Business & Economics categories.


Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams. The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks, and customer click streams. It also addresses several challenges of data mining in the future, when stream mining will be at the core of many applications. These challenges involve designing useful and efficient data mining solutions applicable to real-world problems. In the appendix, the author includes examples of publicly available software and online data sets. This practical, up-to-date book focuses on the new requirements of the next generation of data mining. Although the concepts presented in the text are mainly about data streams, they also are valid for different areas of machine learning and data mining.



Data Mining In Time Series Databases


Data Mining In Time Series Databases
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2004

Data Mining In Time Series Databases written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Data mining categories.