[PDF] Data Mining Methods For Knowledge Discovery - eBooks Review

Data Mining Methods For Knowledge Discovery


Data Mining Methods For Knowledge Discovery
DOWNLOAD

Download Data Mining Methods For Knowledge Discovery PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining Methods For Knowledge Discovery book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Mining Methods For Knowledge Discovery


Data Mining Methods For Knowledge Discovery
DOWNLOAD
Author : Krzysztof J. Cios
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Data Mining Methods For Knowledge Discovery written by Krzysztof J. Cios and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.



Data Mining


Data Mining
DOWNLOAD
Author : Krzysztof J. Cios
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-05

Data Mining written by Krzysztof J. Cios and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-05 with Computers categories.


“If you torture the data long enough, Nature will confess,” said 1991 Nobel-winning economist Ronald Coase. The statement is still true. However, achieving this lofty goal is not easy. First, “long enough” may, in practice, be “too long” in many applications and thus unacceptable. Second, to get “confession” from large data sets one needs to use state-of-the-art “torturing” tools. Third, Nature is very stubborn — not yielding easily or unwilling to reveal its secrets at all. Fortunately, while being aware of the above facts, the reader (a data miner) will find several efficient data mining tools described in this excellent book. The book discusses various issues connecting the whole spectrum of approaches, methods, techniques and algorithms falling under the umbrella of data mining. It starts with data understanding and preprocessing, then goes through a set of methods for supervised and unsupervised learning, and concludes with model assessment, data security and privacy issues. It is this specific approach of using the knowledge discovery process that makes this book a rare one indeed, and thus an indispensable addition to many other books on data mining. To be more precise, this is a book on knowledge discovery from data. As for the data sets, the easy-to-make statement is that there is no part of modern human activity left untouched by both the need and the desire to collect data. The consequence of such a state of affairs is obvious.



Knowledge Discovery And Data Mining


Knowledge Discovery And Data Mining
DOWNLOAD
Author : O. Maimon
language : en
Publisher:
Release Date : 2014-01-15

Knowledge Discovery And Data Mining written by O. Maimon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-15 with categories.




Data Mining And Knowledge Discovery Via Logic Based Methods


Data Mining And Knowledge Discovery Via Logic Based Methods
DOWNLOAD
Author : Evangelos Triantaphyllou
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-08

Data Mining And Knowledge Discovery Via Logic Based Methods written by Evangelos Triantaphyllou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-08 with Computers categories.


The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.



Data Mining And Knowledge Discovery Handbook


Data Mining And Knowledge Discovery Handbook
DOWNLOAD
Author : Oded Maimon
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-28

Data Mining And Knowledge Discovery Handbook written by Oded Maimon and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-28 with Computers categories.


Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.



Data Mining And Knowledge Discovery In Real Life Applications


Data Mining And Knowledge Discovery In Real Life Applications
DOWNLOAD
Author : Julio Ponce
language : en
Publisher: BoD – Books on Demand
Release Date : 2009-01-01

Data Mining And Knowledge Discovery In Real Life Applications written by Julio Ponce and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-01 with Computers categories.


This book presents four different ways of theoretical and practical advances and applications of data mining in different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right way for the students, researchers and practitioners in their studies.



Geographic Data Mining And Knowledge Discovery


Geographic Data Mining And Knowledge Discovery
DOWNLOAD
Author : Harvey J. Miller
language : en
Publisher: CRC Press
Release Date : 2009-05-27

Geographic Data Mining And Knowledge Discovery written by Harvey J. Miller and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-05-27 with Computers categories.


The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal DatabasesSince the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has bee



Feature Selection For Knowledge Discovery And Data Mining


Feature Selection For Knowledge Discovery And Data Mining
DOWNLOAD
Author : Huan Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Feature Selection For Knowledge Discovery And Data Mining written by Huan Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.



Data Mining And Knowledge Discovery With Evolutionary Algorithms


Data Mining And Knowledge Discovery With Evolutionary Algorithms
DOWNLOAD
Author : Alex A. Freitas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Data Mining And Knowledge Discovery With Evolutionary Algorithms written by Alex A. Freitas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Computers categories.


This book addresses the integration of two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increas ingly popular in the last few years, and their integration is currently an area of active research. In essence, data mining consists of extracting valid, comprehensible, and in teresting knowledge from data. Data mining is actually an interdisciplinary field, since there are many kinds of methods that can be used to extract knowledge from data. Arguably, data mining mainly uses methods from machine learning (a branch of artificial intelligence) and statistics (including statistical pattern recog nition). Our discussion of data mining and evolutionary algorithms is primarily based on machine learning concepts and principles. In particular, in this book we emphasize the importance of discovering comprehensible, interesting knowledge, which the user can potentially use to make intelligent decisions. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowl edge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.