[PDF] Data Mining Techniques - eBooks Review

Data Mining Techniques


Data Mining Techniques
DOWNLOAD

Download Data Mining Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Mining Techniques


Data Mining Techniques
DOWNLOAD
Author : Michael J. A. Berry
language : en
Publisher: John Wiley & Sons
Release Date : 2004-04-14

Data Mining Techniques written by Michael J. A. Berry and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-14 with Computers categories.


Packed with more than forty percent new and updated material,this edition shows business managers, marketing analysts, and datamining specialists how to harness fundamental data mining methodsand techniques to solve common types of business problems Each chapter covers a new data mining technique, and then showsreaders how to apply the technique for improved marketing, sales,and customer support The authors build on their reputation for concise, clear, andpractical explanations of complex concepts, making this book theperfect introduction to data mining More advanced chapters cover such topics as how to prepare datafor analysis and how to create the necessary infrastructure fordata mining Covers core data mining techniques, including decision trees,neural networks, collaborative filtering, association rules, linkanalysis, clustering, and survival analysis



Data Mining Concepts And Techniques


Data Mining Concepts And Techniques
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2011-06-09

Data Mining Concepts And Techniques written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Computers categories.


Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data



Intelligent Data Mining


Intelligent Data Mining
DOWNLOAD
Author : Da Ruan
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-08-24

Intelligent Data Mining written by Da Ruan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-24 with Mathematics categories.


"Intelligent Data Mining – Techniques and Applications" is an organized edited collection of contributed chapters covering basic knowledge for intelligent systems and data mining, applications in economic and management, industrial engineering and other related industrial applications. The main objective of this book is to gather a number of peer-reviewed high quality contributions in the relevant topic areas. The focus is especially on those chapters that provide theoretical/analytical solutions to the problems of real interest in intelligent techniques possibly combined with other traditional tools, for data mining and the corresponding applications to engineers and managers of different industrial sectors. Academic and applied researchers and research students working on data mining can also directly benefit from this book.



Data Mining


Data Mining
DOWNLOAD
Author : Ian H. Witten
language : en
Publisher: Elsevier
Release Date : 2011-02-03

Data Mining written by Ian H. Witten and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-03 with Computers categories.


Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization



Statistical And Machine Learning Data Mining


Statistical And Machine Learning Data Mining
DOWNLOAD
Author : Bruce Ratner
language : en
Publisher: CRC Press
Release Date : 2012-02-28

Statistical And Machine Learning Data Mining written by Bruce Ratner and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-28 with Business & Economics categories.


The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.



Data Mining Techniques For The Life Sciences


Data Mining Techniques For The Life Sciences
DOWNLOAD
Author : Oliviero Carugo
language : en
Publisher: Humana
Release Date : 2016-08-23

Data Mining Techniques For The Life Sciences written by Oliviero Carugo and has been published by Humana this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-23 with Science categories.


Most life science researchers will agree that biology is not a truly theoretical branch of science. The hype around computational biology and bioinformatics beginning in the nineties of the 20th century was to be short lived (1, 2). When almost no value of practical importance such as the optimal dose of a drug or the three-dimensional structure of an orphan protein can be computed from fundamental principles, it is still more straightforward to determine them experimentally. Thus, experiments and observationsdogeneratetheoverwhelmingpartofinsightsintobiologyandmedicine. The extrapolation depth and the prediction power of the theoretical argument in life sciences still have a long way to go. Yet, two trends have qualitatively changed the way how biological research is done today. The number of researchers has dramatically grown and they, armed with the same protocols, have produced lots of similarly structured data. Finally, high-throu- put technologies such as DNA sequencing or array-based expression profiling have been around for just a decade. Nevertheless, with their high level of uniform data generation, they reach the threshold of totally describing a living organism at the biomolecular level for the first time in human history. Whereas getting exact data about living systems and the sophistication of experimental procedures have primarily absorbed the minds of researchers previously, the weight increasingly shifts to the problem of interpreting accumulated data in terms of biological function and bio- lecular mechanisms.



Principles Of Data Mining


Principles Of Data Mining
DOWNLOAD
Author : Max Bramer
language : en
Publisher: Springer
Release Date : 2016-11-09

Principles Of Data Mining written by Max Bramer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-09 with Computers categories.


This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.



Handbook Of Statistical Analysis And Data Mining Applications


Handbook Of Statistical Analysis And Data Mining Applications
DOWNLOAD
Author : Ken Yale
language : en
Publisher: Elsevier
Release Date : 2017-11-09

Handbook Of Statistical Analysis And Data Mining Applications written by Ken Yale and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-09 with Mathematics categories.


Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications



Data Mining For Business Analytics


Data Mining For Business Analytics
DOWNLOAD
Author : Galit Shmueli
language : en
Publisher: John Wiley & Sons
Release Date : 2017-09-12

Data Mining For Business Analytics written by Galit Shmueli and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-12 with Mathematics categories.


Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.



Data Mining


Data Mining
DOWNLOAD
Author : Bhavani Thuraisingham
language : en
Publisher: CRC Press
Release Date : 2014-01-23

Data Mining written by Bhavani Thuraisingham and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-23 with Business & Economics categories.


Focusing on a data-centric perspective, this book provides a complete overview of data mining: its uses, methods, current technologies, commercial products, and future challenges. Three parts divide Data Mining: Part I describes technologies for data mining - database systems, warehousing, machine learning, visualization, decision sup