Data Modeling For The Sciences

DOWNLOAD
Download Data Modeling For The Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Modeling For The Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Developing High Quality Data Models
DOWNLOAD
Author : Matthew West
language : en
Publisher: Elsevier
Release Date : 2011-02-07
Developing High Quality Data Models written by Matthew West and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-07 with Computers categories.
Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. - Uses a number of common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality - Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates - Develops ideas for creating consistent approaches to high quality data models
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Information Systems Development And Data Modeling
DOWNLOAD
Author : Rudy Hirschheim
language : en
Publisher: Cambridge University Press
Release Date : 1995-10-27
Information Systems Development And Data Modeling written by Rudy Hirschheim and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-10-27 with Computers categories.
Information systems development is not merely a technical intervention but involves social and ethical dilemmas that affect the human, social and organizational domains. To demonstrate this point, the authors conduct a thorough and substantive description and analysis of the conceptual and philosophical underpinnings of systems development. In particular they analyse a number of systems development methodologies including structured methods, prototyping, ETHICS and Soft Systems Methodology to reveal the underlying conceptual and philosophical foundations. The book provides an in-depth analysis of data modelling theory and its links with theories of language and cognition. It offers a framework to describe and analyse different systems development approaches and to explain their strengths and weaknesses. The book is aimed at graduate students taking courses in information systems and data modelling, but will also appeal to information systems managers and professionals for whom the summary of methodologies will be useful.
Data Modeling For The Sciences
DOWNLOAD
Author : Steve Pressé
language : en
Publisher: Cambridge University Press
Release Date : 2023-08-31
Data Modeling For The Sciences written by Steve Pressé and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-31 with Science categories.
A self-contained and accessible guide to probabilistic data modeling, ideal for students and researchers in the natural sciences.
Data Modeling Essentials
DOWNLOAD
Author : Graeme Simsion
language : en
Publisher: Elsevier
Release Date : 2004-12-03
Data Modeling Essentials written by Graeme Simsion and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-03 with Computers categories.
Data Modeling Essentials, Third Edition, covers the basics of data modeling while focusing on developing a facility in techniques, rather than a simple familiarization with "the rules". In order to enable students to apply the basics of data modeling to real models, the book addresses the realities of developing systems in real-world situations by assessing the merits of a variety of possible solutions as well as using language and diagramming methods that represent industry practice. This revised edition has been given significantly expanded coverage and reorganized for greater reader comprehension even as it retains its distinctive hallmarks of readability and usefulness. Beginning with the basics, the book provides a thorough grounding in theory before guiding the reader through the various stages of applied data modeling and database design. Later chapters address advanced subjects, including business rules, data warehousing, enterprise-wide modeling and data management. It includes an entirely new section discussing the development of logical and physical modeling, along with new material describing a powerful technique for model verification. It also provides an excellent resource for additional lectures and exercises. This text is the ideal reference for data modelers, data architects, database designers, DBAs, and systems analysts, as well as undergraduate and graduate-level students looking for a real-world perspective. - Thorough coverage of the fundamentals and relevant theory - Recognition and support for the creative side of the process - Expanded coverage of applied data modeling includes new chapters on logical and physical database design - New material describing a powerful technique for model verification - Unique coverage of the practical and human aspects of modeling, such as working with business specialists, managing change, and resolving conflict
Hands On Big Data Modeling
DOWNLOAD
Author : James Lee
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-30
Hands On Big Data Modeling written by James Lee and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.
Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.
Data Driven Modeling Scientific Computation
DOWNLOAD
Author : Jose Nathan Kutz
language : en
Publisher:
Release Date : 2013-08-08
Data Driven Modeling Scientific Computation written by Jose Nathan Kutz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-08 with Computers categories.
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Random Fields For Spatial Data Modeling
DOWNLOAD
Author : Dionissios T. Hristopulos
language : en
Publisher: Springer Nature
Release Date : 2020-02-17
Random Fields For Spatial Data Modeling written by Dionissios T. Hristopulos and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-17 with Science categories.
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
Data Modeling With Erwin
DOWNLOAD
Author : M. Carla DeAngelis
language : en
Publisher: Sams Publishing
Release Date : 2000
Data Modeling With Erwin written by M. Carla DeAngelis and has been published by Sams Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Client/server computing categories.
From the first chapter, author Carla DeAngelis skillfully explains the normally complex concepts of Data Modeling-a critical success factor in the information-based enterprises of today. Carla tackles complex topics such as Logical Data Models, Modeling Methodologies, Relationships, and Attributes in a clear style that makes it simple for anyone to begin applying them immediately. Once the foundation has been laid, Carla teaches you to develop your own databases with ERwin. You will learn to use the tool to create primary keys and assign attributes, build data relationships with point and click ease, build and edit tables with Erwin's built-in editors, create indexes with the Index Editor, write custom SQL scripts, and process reports with the Report Tools.
Data Driven Science And Engineering
DOWNLOAD
Author : Steven L. Brunton
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-05
Data Driven Science And Engineering written by Steven L. Brunton and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-05 with Computers categories.
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.