Deep Generative Modeling

DOWNLOAD
Download Deep Generative Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Generative Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Generative Modeling
DOWNLOAD
Author : Jakub M. Tomczak
language : en
Publisher: Springer
Release Date : 2022-03-16
Deep Generative Modeling written by Jakub M. Tomczak and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-16 with Computers categories.
This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
Generative Deep Learning
DOWNLOAD
Author : David Foster
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-28
Generative Deep Learning written by David Foster and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-28 with Computers categories.
Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Advances In Deep Generative Modeling For Clinical Data
DOWNLOAD
Author : Rahul Gopalkrishnan
language : en
Publisher:
Release Date : 2020
Advances In Deep Generative Modeling For Clinical Data written by Rahul Gopalkrishnan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
The intelligent use of electronic health record data opens up new opportunities to improve clinical care. Such data have the potential to uncover new sub-types of a disease, approximate the effect of a drug on a patient, and create tools to find patients with similar phenotypic profiles. Motivated by such questions, this thesis develops new algorithms for unsupervised and semi-supervised learning of latent variable, deep generative models – Bayesian networks parameterized by neural networks. To model static, high-dimensional data, we derive a new algorithm for inference in deep generative models. The algorithm, a hybrid between stochastic variational inference and amortized variational inference, improves the generalization of deep generative models on data with long-tailed distributions. We develop gradient-based approaches to interpret the parameters of deep generative models, and fine-tune such models using supervision to tackle problems that arise in few-shot learning. To model longitudinal patient biomarkers as they vary due to treatment we propose Deep Markov Models (DMMs). We design structured inference networks for variational learning in DMMs; the inference network parameterizes a variational approximation which mimics the factorization of the true posterior distribution. We leverage insights in pharmacology to design neural architectures which improve the generalization of DMMs on clinical problems in the low-data regime. We show how to capture structure in longitudinal data using deep generative models in order to reduce the sample complexity of nonlinear classifiers thus giving us a powerful tool to build risk stratification models from complex data.
Generative Adversarial Networks With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2019-07-11
Generative Adversarial Networks With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-11 with Computers categories.
Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.
Generative Adversarial Networks For Image To Image Translation
DOWNLOAD
Author : Arun Solanki
language : en
Publisher: Academic Press
Release Date : 2021-06-22
Generative Adversarial Networks For Image To Image Translation written by Arun Solanki and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-22 with Science categories.
Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications
Predicting Structured Data
DOWNLOAD
Author : Neural Information Processing Systems Foundation
language : en
Publisher: MIT Press
Release Date : 2007
Predicting Structured Data written by Neural Information Processing Systems Foundation and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Algorithms categories.
State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.
Functionally Graded Materials
DOWNLOAD
Author : Y. Miyamoto
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-27
Functionally Graded Materials written by Y. Miyamoto and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-27 with Technology & Engineering categories.
Seven years have elapsed since Dr. Renee Ford, editor-in-chief of Materials Technology, first suggested to me to publish a book on Functionally Graded Materials (FGMs). She said that the FGM concept, then largely unknown outside of Japan and a relatively few laboratories elsewhere, would be of great interest to everyone working in the materials field because of its potentially universal applicability. There was no book about FGMs in English at that time, although the number of research papers, review articles, and FGM conference proceedings had been increasing yearly. We discussed what the book should cover, and decided it should present a comprehensive description from basic theory to the most recent applications of FGMs. This would make it useful both as an introduction to FGMs for those simply curious about what this new materials field was all about, and also as a textbook for researchers, engineers, and graduate students in various material fields. The FGM Forum in Japan generously offered to support this publication program. is very difficult for an individual author to write a book that Because it covers such a wide range of various aspects of many different materials, I invited more than 30 eminent materials scientists throughout the world, who were associated with FGM research, to contribute selected topics. I also asked several leading researchers in this field to edit selected chapters: Dr. Barry H. Rabin, then at the U. S.
Deep Generative Modeling In Network Science With Applications To Public Policy Research
DOWNLOAD
Author : Gavin S. Hartnett
language : en
Publisher:
Release Date : 2020
Deep Generative Modeling In Network Science With Applications To Public Policy Research written by Gavin S. Hartnett and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
Network data are increasingly being used in quantitative, data-driven public policy research. These are typically very rich datasets that contain complex correlations and inter-dependencies. This richness both promises to be quite useful for policy research, while at the same time posing a challenge for the useful extraction of information from these datasets - a challenge which calls for new data analysis methods. In this report, we formulate a research agenda of key methodological problems whose solutions would enable new advances across many areas of policy research. We then review recent advances in applying deep learning to network data, and show how these meth- ods may be used to address many of the methodological problems we identified. We particularly emphasize deep generative methods, which can be used to generate realistic synthetic networks useful for microsimulation and agent-based models capable of informing key public policy ques- tions. We extend these recent advances by developing a new generative framework which applies to large social contact networks commonly used in epidemiological modeling. For context, we also compare and contrast these recent neural network-based approaches with the more tradi- tional Exponential Random Graph Models. Lastly, we discuss some open problems where more progress is needed.
Gans In Action
DOWNLOAD
Author : Vladimir Bok
language : en
Publisher: Simon and Schuster
Release Date : 2019-09-09
Gans In Action written by Vladimir Bok and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.
Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.