[PDF] Deep Learning Applications In Medical Image Segmentation - eBooks Review

Deep Learning Applications In Medical Image Segmentation


Deep Learning Applications In Medical Image Segmentation
DOWNLOAD

Download Deep Learning Applications In Medical Image Segmentation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Applications In Medical Image Segmentation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning Applications In Medical Image Segmentation


Deep Learning Applications In Medical Image Segmentation
DOWNLOAD
Author : Sajid Yousuf Bhat
language : en
Publisher: John Wiley & Sons
Release Date : 2025-01-03

Deep Learning Applications In Medical Image Segmentation written by Sajid Yousuf Bhat and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.


Apply revolutionary deep learning technology to the fast-growing field of medical image segmentation Precise medical image segmentation is rapidly becoming one of the most important tools in medical research, diagnosis, and treatment. The potential for deep learning, a technology which is already revolutionizing practice across hundreds of subfields, is immense. The prospect of using deep learning to address the traditional shortcomings of image segmentation demands close inspection and wide proliferation of relevant knowledge. Deep Learning Applications in Medical Image Segmentation meets this demand with a comprehensive introduction and its growing applications. Covering foundational concepts and its advanced techniques, it offers a one-stop resource for researchers and other readers looking for a detailed understanding of the topic. It is deeply engaged with the main challenges and recent advances in the field of deep-learning-based medical image segmentation. Readers will also find: Analysis of deep learning models, including FCN, UNet, SegNet, Dee Lab, and many more Detailed discussion of medical image segmentation divided by area, incorporating all major organs and organ systems Recent deep learning advancements in segmenting brain tumors, retinal vessels, and inner ear structures Analyzes the effectiveness of deep learning models in segmenting lung fields for respiratory disease diagnosis Explores the application and benefits of Generative Adversarial Networks (GANs) in enhancing medical image segmentation Identifies and discusses the key challenges faced in medical image segmentation using deep learning techniques Provides an overview of the latest advancements, applications, and future trends in deep learning for medical image analysis Deep Learning Applications in Medical Image Segmentation is ideal for academics and researchers working with medical image segmentation, as well as professionals in medical imaging, data science, and biomedical engineering.



Deep Learning For Medical Image Analysis


Deep Learning For Medical Image Analysis
DOWNLOAD
Author : S. Kevin Zhou
language : en
Publisher: Academic Press
Release Date : 2017-01-18

Deep Learning For Medical Image Analysis written by S. Kevin Zhou and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-18 with Computers categories.


Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache



Medical Image Recognition Segmentation And Parsing


Medical Image Recognition Segmentation And Parsing
DOWNLOAD
Author : S. Kevin Zhou
language : en
Publisher: Academic Press
Release Date : 2015-12-11

Medical Image Recognition Segmentation And Parsing written by S. Kevin Zhou and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-11 with Computers categories.


This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: - Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects - Methods and theories for medical image recognition, segmentation and parsing of multiple objects - Efficient and effective machine learning solutions based on big datasets - Selected applications of medical image parsing using proven algorithms - Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects - Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets - Includes algorithms for recognizing and parsing of known anatomies for practical applications



Deep Learning Applications In Medical Imaging


Deep Learning Applications In Medical Imaging
DOWNLOAD
Author : Saxena, Sanjay
language : en
Publisher: IGI Global
Release Date : 2020-10-16

Deep Learning Applications In Medical Imaging written by Saxena, Sanjay and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-16 with Medical categories.


Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.



Computational Analysis And Deep Learning For Medical Care


Computational Analysis And Deep Learning For Medical Care
DOWNLOAD
Author : Amit Kumar Tyagi
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-24

Computational Analysis And Deep Learning For Medical Care written by Amit Kumar Tyagi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Computers categories.


The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.



Deep Neural Networks For Multimodal Imaging And Biomedical Applications


Deep Neural Networks For Multimodal Imaging And Biomedical Applications
DOWNLOAD
Author : Suresh, Annamalai
language : en
Publisher: IGI Global
Release Date : 2020-06-26

Deep Neural Networks For Multimodal Imaging And Biomedical Applications written by Suresh, Annamalai and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-26 with Computers categories.


The field of healthcare is seeing a rapid expansion of technological advancement within current medical practices. The implementation of technologies including neural networks, multi-model imaging, genetic algorithms, and soft computing are assisting in predicting and identifying diseases, diagnosing cancer, and the examination of cells. Implementing these biomedical technologies remains a challenge for hospitals worldwide, creating a need for research on the specific applications of these computational techniques. Deep Neural Networks for Multimodal Imaging and Biomedical Applications provides research exploring the theoretical and practical aspects of emerging data computing methods and imaging techniques within healthcare and biomedicine. The publication provides a complete set of information in a single module starting from developing deep neural networks to predicting disease by employing multi-modal imaging. Featuring coverage on a broad range of topics such as prediction models, edge computing, and quantitative measurements, this book is ideally designed for researchers, academicians, physicians, IT consultants, medical software developers, practitioners, policymakers, scholars, and students seeking current research on biomedical advancements and developing computational methods in healthcare.



Understanding And Interpreting Machine Learning In Medical Image Computing Applications


Understanding And Interpreting Machine Learning In Medical Image Computing Applications
DOWNLOAD
Author : Danail Stoyanov
language : en
Publisher: Springer
Release Date : 2018-10-23

Understanding And Interpreting Machine Learning In Medical Image Computing Applications written by Danail Stoyanov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Computers categories.


This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.



Deep Learning Applications In Medical Image Segmentation


Deep Learning Applications In Medical Image Segmentation
DOWNLOAD
Author : Sajid Yousuf Bhat
language : en
Publisher: John Wiley & Sons
Release Date : 2025-01-22

Deep Learning Applications In Medical Image Segmentation written by Sajid Yousuf Bhat and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-22 with Computers categories.


Apply revolutionary deep learning technology to the fast-growing field of medical image segmentation Precise medical image segmentation is rapidly becoming one of the most important tools in medical research, diagnosis, and treatment. The potential for deep learning, a technology which is already revolutionizing practice across hundreds of subfields, is immense. The prospect of using deep learning to address the traditional shortcomings of image segmentation demands close inspection and wide proliferation of relevant knowledge. Deep Learning Applications in Medical Image Segmentation meets this demand with a comprehensive introduction and its growing applications. Covering foundational concepts and its advanced techniques, it offers a one-stop resource for researchers and other readers looking for a detailed understanding of the topic. It is deeply engaged with the main challenges and recent advances in the field of deep-learning-based medical image segmentation. Readers will also find: Analysis of deep learning models, including FCN, UNet, SegNet, Dee Lab, and many more Detailed discussion of medical image segmentation divided by area, incorporating all major organs and organ systems Recent deep learning advancements in segmenting brain tumors, retinal vessels, and inner ear structures Analyzes the effectiveness of deep learning models in segmenting lung fields for respiratory disease diagnosis Explores the application and benefits of Generative Adversarial Networks (GANs) in enhancing medical image segmentation Identifies and discusses the key challenges faced in medical image segmentation using deep learning techniques Provides an overview of the latest advancements, applications, and future trends in deep learning for medical image analysis Deep Learning Applications in Medical Image Segmentation is ideal for academics and researchers working with medical image segmentation, as well as professionals in medical imaging, data science, and biomedical engineering.



Deep Learning And Data Labeling For Medical Applications


Deep Learning And Data Labeling For Medical Applications
DOWNLOAD
Author : Gustavo Carneiro
language : en
Publisher: Springer
Release Date : 2016-10-07

Deep Learning And Data Labeling For Medical Applications written by Gustavo Carneiro and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-07 with Computers categories.


This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.



Deep Learning For Biomedical Applications


Deep Learning For Biomedical Applications
DOWNLOAD
Author : Utku Kose
language : en
Publisher: CRC Press
Release Date : 2021-07-19

Deep Learning For Biomedical Applications written by Utku Kose and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-19 with Technology & Engineering categories.


This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.