[PDF] Deep Learning Applications Volume 2 - eBooks Review

Deep Learning Applications Volume 2


Deep Learning Applications Volume 2
DOWNLOAD

Download Deep Learning Applications Volume 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Applications Volume 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning Applications Volume 2


Deep Learning Applications Volume 2
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher: Springer Nature
Release Date : 2020-09-24

Deep Learning Applications Volume 2 written by M. Arif Wani and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-24 with Technology & Engineering categories.


This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.



Deep Learning Applications Volume 2


Deep Learning Applications Volume 2
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher:
Release Date : 2021

Deep Learning Applications Volume 2 written by M. Arif Wani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Deep Learning Applications


Deep Learning Applications
DOWNLOAD
Author : Pier Luigi Mazzeo
language : en
Publisher: BoD – Books on Demand
Release Date : 2021-07-14

Deep Learning Applications written by Pier Luigi Mazzeo and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-14 with Computers categories.


Deep learning is a branch of machine learning similar to artificial intelligence. The applications of deep learning vary from medical imaging to industrial quality checking, sports, and precision agriculture. This book is divided into two sections. The first section covers deep learning architectures and the second section describes the state of the art of applications based on deep learning.



Deep Learning Fundamentals Theory And Applications


Deep Learning Fundamentals Theory And Applications
DOWNLOAD
Author : Kaizhu Huang
language : en
Publisher: Springer
Release Date : 2019-02-15

Deep Learning Fundamentals Theory And Applications written by Kaizhu Huang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-15 with Medical categories.


The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field. This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications.



Deep Learning Applications For Cyber Security


Deep Learning Applications For Cyber Security
DOWNLOAD
Author : Mamoun Alazab
language : en
Publisher: Springer
Release Date : 2019-08-14

Deep Learning Applications For Cyber Security written by Mamoun Alazab and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-14 with Computers categories.


Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.



Handbook Of Deep Learning Applications


Handbook Of Deep Learning Applications
DOWNLOAD
Author : Valentina Emilia Balas
language : en
Publisher: Springer
Release Date : 2019-02-25

Handbook Of Deep Learning Applications written by Valentina Emilia Balas and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-25 with Computers categories.


This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.



Deep Learning Applications Volume 3


Deep Learning Applications Volume 3
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher: Springer Nature
Release Date : 2021-11-12

Deep Learning Applications Volume 3 written by M. Arif Wani and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-12 with Technology & Engineering categories.


This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel ways of using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.



Deep Learning Applications Volume 2


Deep Learning Applications Volume 2
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher: Springer
Release Date : 2020-12-14

Deep Learning Applications Volume 2 written by M. Arif Wani and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Technology & Engineering categories.


This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.



Advances In Deep Learning


Advances In Deep Learning
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher: Springer
Release Date : 2019-03-14

Advances In Deep Learning written by M. Arif Wani and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-14 with Computers categories.


This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.