[PDF] Deep Learning For Multi Sensor Earth Observation - eBooks Review

Deep Learning For Multi Sensor Earth Observation


Deep Learning For Multi Sensor Earth Observation
DOWNLOAD

Download Deep Learning For Multi Sensor Earth Observation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Multi Sensor Earth Observation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning For Multi Sensor Earth Observation


Deep Learning For Multi Sensor Earth Observation
DOWNLOAD
Author : Sudipan Saha
language : en
Publisher: Elsevier
Release Date : 2025-02-01

Deep Learning For Multi Sensor Earth Observation written by Sudipan Saha and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-01 with Technology & Engineering categories.


Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development. Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning.



Deep Learning For Multi Sensor Earth Observation


Deep Learning For Multi Sensor Earth Observation
DOWNLOAD
Author : Sudipan Saha
language : en
Publisher: Elsevier
Release Date : 2025-02-03

Deep Learning For Multi Sensor Earth Observation written by Sudipan Saha and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-03 with Technology & Engineering categories.


Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning. - Addresses the problem of unwieldy datasets from multi-sensor observations, applying Deep Learning to multi-sensor data integration from disparate sources with different resolution and quality - Provides a thorough foundational reference to Deep Learning applications for handling Earth Observation multi-sensor data across a variety of geosciences - Includes case studies and real-world data/examples allowing readers to better grasp how to put Deep Learning techniques and methods into practice



Fundamentals And Methods Of Machine And Deep Learning


Fundamentals And Methods Of Machine And Deep Learning
DOWNLOAD
Author : Pradeep Singh
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-02

Fundamentals And Methods Of Machine And Deep Learning written by Pradeep Singh and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-02 with Computers categories.


FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.



Multisensor Data Fusion And Machine Learning For Environmental Remote Sensing


Multisensor Data Fusion And Machine Learning For Environmental Remote Sensing
DOWNLOAD
Author : Ni-Bin Chang
language : en
Publisher: CRC Press
Release Date : 2018-02-21

Multisensor Data Fusion And Machine Learning For Environmental Remote Sensing written by Ni-Bin Chang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Technology & Engineering categories.


In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.



Deep Learning For Earth Observation And Climate Monitoring


Deep Learning For Earth Observation And Climate Monitoring
DOWNLOAD
Author : Uzair Aslam Bhatti
language : en
Publisher: Elsevier
Release Date : 2025-03-19

Deep Learning For Earth Observation And Climate Monitoring written by Uzair Aslam Bhatti and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-19 with Science categories.


Deep Learning for Earth Observation and Climate Monitoring bridges the gap between deep learning and the Earth sciences, offering cutting-edge techniques and applications that are transforming our understanding of the environment. With a focus on practical scenarios, this book introduces readers to the fundamental concepts of deep learning, from classification and image segmentation to anomaly detection and domain adaptability. The book includes practical discussion on regression, parameter retrieval, forecasting, and interpolation, among other topics. With a solid foundational theory, real-world examples, and example codes, it provides a full understanding of how intelligent systems can be applied to enhance Earth observation and especially climate monitoring.This book allows readers to apply learning representations, unsupervised deep learning, and physics-aware models to Earth observation data, enabling them to leverage the power of deep learning to fully utilize the wealth of environmental data from satellite technologies. - Introduces deep learning for classification, covering recent improvements in image segmentation and encoding priors, anomaly detection and target recognition, and domain adaptability - Includes both learning representations and unsupervised deep learning, covering deep learning picture fusion, regression, parameter retrieval, forecasting, and interpolation from a practical standpoint - Provides a number of physics-aware deep learning models, including the code and the parameterization of models on a companion website, as well as links to relevant data repositories, allowing readers to test techniques themselves



Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification


Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification
DOWNLOAD
Author : Anil Kumar
language : en
Publisher: CRC Press
Release Date : 2020-07-19

Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification written by Anil Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-19 with Computers categories.


This book covers the state-of-art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy machine learning and deep learning algorithms. Both types of algorithms are described in such details that these can be implemented directly for thematic mapping of multiple-class or specific-class landcover from multispectral optical remote sensing data. These algorithms along with multi-date, multi-sensor remote sensing are capable to monitor specific stage (for e.g., phenology of growing crop) of a particular class also included. With these capabilities fuzzy machine learning algorithms have strong applications in areas like crop insurance, forest fire mapping, stubble burning, post disaster damage mapping etc. It also provides details about the temporal indices database using proposed Class Based Sensor Independent (CBSI) approach supported by practical examples. As well, this book addresses other related algorithms based on distance, kernel based as well as spatial information through Markov Random Field (MRF)/Local convolution methods to handle mixed pixels, non-linearity and noisy pixels. Further, this book covers about techniques for quantiative assessment of soft classified fraction outputs from soft classification and supported by in-house developed tool called sub-pixel multi-spectral image classifier (SMIC). It is aimed at graduate, postgraduate, research scholars and working professionals of different branches such as Geoinformation sciences, Geography, Electrical, Electronics and Computer Sciences etc., working in the fields of earth observation and satellite image processing. Learning algorithms discussed in this book may also be useful in other related fields, for example, in medical imaging. Overall, this book aims to: exclusive focus on using large range of fuzzy classification algorithms for remote sensing images; discuss ANN, CNN, RNN, and hybrid learning classifiers application on remote sensing images; describe sub-pixel multi-spectral image classifier tool (SMIC) to support discussed fuzzy and learning algorithms; explain how to assess soft classified outputs as fraction images using fuzzy error matrix (FERM) and its advance versions with FERM tool, Entropy, Correlation Coefficient, Root Mean Square Error and Receiver Operating Characteristic (ROC) methods and; combines explanation of the algorithms with case studies and practical applications.



Multitemporal Earth Observation Image Analysis


Multitemporal Earth Observation Image Analysis
DOWNLOAD
Author : Clément Mallet
language : en
Publisher: John Wiley & Sons
Release Date : 2024-08-20

Multitemporal Earth Observation Image Analysis written by Clément Mallet and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-20 with Technology & Engineering categories.


Earth observation has witnessed a unique paradigm change in the last decade with a diverse and ever-growing number of data sources. Among them, time series of remote sensing images has proven to be invaluable for numerous environmental and climate studies. Multitemporal Earth Observation Image Analysis provides illustrations of recent methodological advances in data processing and information extraction from imagery, with an emphasis on the temporal dimension uncovered either by recent satellite constellations (in particular the Sentinels from the European Copernicus programme) or archival aerial images available in national archives. The book shows how complementary data sources can be efficiently used, how spatial and temporal information can be leveraged for biophysical parameter estimation, classification of land surfaces and object tracking, as well as how standard machine learning and state-of-the-art deep learning solutions can solve complex problems with real-world applications.



Building Feature Extraction With Machine Learning


Building Feature Extraction With Machine Learning
DOWNLOAD
Author : Bharath.H. Aithal
language : en
Publisher: CRC Press
Release Date : 2022-12-29

Building Feature Extraction With Machine Learning written by Bharath.H. Aithal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-29 with Technology & Engineering categories.


Big geospatial datasets created by large infrastructure projects require massive computing resources to process. Feature extraction is a process used to reduce the initial set of raw data for manageable image processing, and machine learning (ML) is the science that supports it. This book focuses on feature extraction methods for optical geospatial data using ML. It is a practical guide for professionals and graduate students who are starting a career in information extraction. It explains spatial feature extraction in an easy-to-understand way and includes real case studies on how to collect height values for spatial features, how to develop 3D models in a map context, and others. Features Provides the basics of feature extraction methods and applications along with the fundamentals of machine learning Discusses in detail the application of machine learning techniques in geospatial building feature extraction Explains the methods for estimating object height from optical satellite remote sensing images using Python Includes case studies that demonstrate the use of machine learning models for building footprint extraction and photogrammetric methods for height assessment Highlights the potential of machine learning and geospatial technology for future project developments This book will be of interest to professionals, researchers, and graduate students in geoscience and earth observation, machine learning and data science, civil engineers, and urban planners.



Harnessing Data Science For Sustainable Agriculture And Natural Resource Management


Harnessing Data Science For Sustainable Agriculture And Natural Resource Management
DOWNLOAD
Author : Mehul S. Raval
language : en
Publisher: Springer Nature
Release Date : 2024-12-19

Harnessing Data Science For Sustainable Agriculture And Natural Resource Management written by Mehul S. Raval and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-19 with Computers categories.


This book is a comprehensive resource that handles the issues of sustainable agriculture and natural resource management, aligned with the United Nations' Sustainable Development Goals (SDGs). The book is organized into five sections, Understanding the Problem, Data Collection and Cleaning, Exploratory Data Analysis and Visualization, Model Building, and Model Deployment. Each section covers a critical aspect of data science in this context and addresses specific SDGs 2—zero hunger, 6—clean water and sanitation, 12—responsible consumption and production, 13—climate action, and 15—Life on land. The organized sections are arranged to seamlessly follow the data science pipeline and provide practical guidance from problem understanding to its model deployment and stakeholder management. The book is useful for researchers, students, practitioners, and policymakers.



Earth Observation


Earth Observation
DOWNLOAD
Author : Rustam B. Rustamov
language : en
Publisher: BoD – Books on Demand
Release Date : 2012-01-27

Earth Observation written by Rustam B. Rustamov and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-27 with Technology & Engineering categories.


Today, space technology is used as an excellent instrument for Earth observation applications. Data is collected using satellites and other available platforms for remote sensing. Remote sensing data collection detects a wide range of electromagnetic energy which is emitting, transmitting, or reflecting from the Earth's surface. Appropriate detection systems are needed to implement further data processing. Space technology has been found to be a successful application for studying climate change, as current and past data can be dynamically compared. This book presents different aspects of climate change and discusses space technology applications.