[PDF] Deep Learning For Video Understanding - eBooks Review

Deep Learning For Video Understanding


Deep Learning For Video Understanding
DOWNLOAD

Download Deep Learning For Video Understanding PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Video Understanding book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning For Video Understanding


Deep Learning For Video Understanding
DOWNLOAD
Author : Zuxuan Wu
language : en
Publisher: Springer Nature
Release Date : 2024-08-01

Deep Learning For Video Understanding written by Zuxuan Wu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-01 with Technology & Engineering categories.


This book presents deep learning techniques for video understanding. For deep learning basics, the authors cover machine learning pipelines and notations, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. For action recognition, the authors introduce classical frameworks for image classification, and then elaborate both image-based and clip-based 2D/3D CNN networks for action recognition. For action detection, the authors elaborate sliding windows, proposal-based detection methods, single stage and two stage approaches, spatial and temporal action localization, followed by datasets introduction. For video captioning, the authors present language-based models and how to perform sequence to sequence learning for video captioning. For unsupervised feature learning, the authors discuss the necessity of shifting from supervised learning to unsupervised learning and then introduce how to design better surrogate training tasks to learn video representations. Finally, the book introduces recent self-training pipelines like contrastive learning and masked image/video modeling with transformers. The book provides promising directions, with an aim to promote future research outcomes in the field of video understanding with deep learning.



Deep Learning For Computer Vision


Deep Learning For Computer Vision
DOWNLOAD
Author : Rajalingappaa Shanmugamani
language : en
Publisher: Packt Publishing
Release Date : 2018-01-23

Deep Learning For Computer Vision written by Rajalingappaa Shanmugamani and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-23 with Computers categories.


Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python--and some understanding of machine learning concepts--is required to get the best out of this book.



Multimodal Scene Understanding


Multimodal Scene Understanding
DOWNLOAD
Author : Michael Ying Yang
language : en
Publisher: Academic Press
Release Date : 2019-07-16

Multimodal Scene Understanding written by Michael Ying Yang and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-16 with Technology & Engineering categories.


Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Strengthening Deep Neural Networks


Strengthening Deep Neural Networks
DOWNLOAD
Author : Katy Warr
language : en
Publisher: O'Reilly Media
Release Date : 2019-07-03

Strengthening Deep Neural Networks written by Katy Warr and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-03 with Computers categories.


As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Real Time Computer Vision


Real Time Computer Vision
DOWNLOAD
Author : Christopher M. Brown
language : en
Publisher: Cambridge University Press
Release Date : 1995-03-30

Real Time Computer Vision written by Christopher M. Brown and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-03-30 with Computers categories.


This first book on real-time computer vision will interest all involved in the design and programming of visually guided systems.



Understanding Deep Learning


Understanding Deep Learning
DOWNLOAD
Author : Chitta Ranjan
language : en
Publisher:
Release Date : 2020-12-24

Understanding Deep Learning written by Chitta Ranjan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-24 with categories.


Think of deep learning as an art of cooking. One way to cook is to follow a recipe. But when we learn how the food, the spices, and the fire behave, we make our creation. And an understanding of the "how" transcends the creation. Likewise, an understanding of the "how" transcends deep learning. In this spirit, this book presents the deep learning constructs, their fundamentals, and how they behave. Baseline models are developed alongside, and concepts to improve them are exemplified.Topics covered in the book include:- Multilayer Perceptrons- Long- and short-term Memory Networks- Convolutional Neural Networks- AutoencodersEvery topic is thoroughly explained and illustrated graphically. Moreover, implementations in TensorFlow are given for developing a complete understanding.



The Principles Of Deep Learning Theory


The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26

The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.


This volume develops an effective theory approach to understanding deep neural networks of practical relevance.



Video Understanding Using Multimodal Deep Learning


Video Understanding Using Multimodal Deep Learning
DOWNLOAD
Author : Arsha Nagrani
language : en
Publisher:
Release Date : 2020

Video Understanding Using Multimodal Deep Learning written by Arsha Nagrani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.