Deep Learning From The Basics

DOWNLOAD
Download Deep Learning From The Basics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning From The Basics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Deep Learning From The Basics
DOWNLOAD
Author : Koki Saitoh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-03-08
Deep Learning From The Basics written by Koki Saitoh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-08 with Computers categories.
Discover ways to implement various deep learning algorithms by leveraging Python and other technologies Key FeaturesLearn deep learning models through several activitiesBegin with simple machine learning problems, and finish by building a complex system of your ownTeach your machines to see by mastering the technologies required for image recognitionBook Description Deep learning is rapidly becoming the most preferred way of solving data problems. This is thanks, in part, to its huge variety of mathematical algorithms and their ability to find patterns that are otherwise invisible to us. Deep Learning from the Basics begins with a fast-paced introduction to deep learning with Python, its definition, characteristics, and applications. You'll learn how to use the Python interpreter and the script files in your applications, and utilize NumPy and Matplotlib in your deep learning models. As you progress through the book, you'll discover backpropagation—an efficient way to calculate the gradients of weight parameters—and study multilayer perceptrons and their limitations, before, finally, implementing a three-layer neural network and calculating multidimensional arrays. By the end of the book, you'll have the knowledge to apply the relevant technologies in deep learning. What you will learnUse Python with minimum external sources to implement deep learning programsStudy the various deep learning and neural network theoriesLearn how to determine learning coefficients and the initial values of weightsImplement trends such as Batch Normalization, Dropout, and AdamExplore applications like automatic driving, image generation, and reinforcement learningWho this book is for Deep Learning from the Basics is designed for data scientists, data analysts, and developers who want to use deep learning techniques to develop efficient solutions. This book is ideal for those who want a deeper understanding as well as an overview of the technologies. Some working knowledge of Python is a must. Knowledge of NumPy and pandas will be beneficial, but not essential.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Fundamentals Of Deep Learning
DOWNLOAD
Author : Nikhil Buduma
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-25
Fundamentals Of Deep Learning written by Nikhil Buduma and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Grokking Machine Learning
DOWNLOAD
Author : Luis Serrano
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-14
Grokking Machine Learning written by Luis Serrano and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.
Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you'll build interesting projects with Python, including models for spam detection and image recognition. You'll also pick up practical skills for cleaning and preparing data.
Learning Deep Learning
DOWNLOAD
Author : Magnus Ekman
language : en
Publisher: Addison-Wesley Professional
Release Date : 2021-07-19
Learning Deep Learning written by Magnus Ekman and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-19 with Computers categories.
NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Deep Learning With Python
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2017-11-30
Deep Learning With Python written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-30 with Computers categories.
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Deep Learning
DOWNLOAD
Author : Shriram K Vasudevan
language : en
Publisher: CRC Press
Release Date : 2021-12-24
Deep Learning written by Shriram K Vasudevan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-24 with Computers categories.
Deep Learning: A Comprehensive Guide provides comprehensive coverage of Deep Learning (DL) and Machine Learning (ML) concepts. DL and ML are the most sought-after domains, requiring a deep understanding – and this book gives no less than that. This book enables the reader to build innovative and useful applications based on ML and DL. Starting with the basics of neural networks, and continuing through the architecture of various types of CNNs, RNNs, LSTM, and more till the end of the book, each and every topic is given the utmost care and shaped professionally and comprehensively. Key Features Includes the smooth transition from ML concepts to DL concepts Line-by-line explanations have been provided for all the coding-based examples Includes a lot of real-time examples and interview questions that will prepare the reader to take up a job in ML/DL right away Even a person with a non-computer-science background can benefit from this book by following the theory, examples, case studies, and code snippets Every chapter starts with the objective and ends with a set of quiz questions to test the reader’s understanding Includes references to the related YouTube videos that provide additional guidance AI is a domain for everyone. This book is targeted toward everyone irrespective of their field of specialization. Graduates and researchers in deep learning will find this book useful.
Machine Learning Fundamentals
DOWNLOAD
Author : Hui Jiang
language : en
Publisher: Cambridge University Press
Release Date : 2021-11-25
Machine Learning Fundamentals written by Hui Jiang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-25 with Computers categories.
This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely “from scratch” based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.