[PDF] Deep Learning In Bioinformatics - eBooks Review

Deep Learning In Bioinformatics


Deep Learning In Bioinformatics
DOWNLOAD

Download Deep Learning In Bioinformatics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Bioinformatics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advances In Deep Learning And Bioinformatics


Advances In Deep Learning And Bioinformatics
DOWNLOAD
Author : Dr. Monish Mukul Das
language : en
Publisher: Chyren Publication
Release Date : 2025-02-04

Advances In Deep Learning And Bioinformatics written by Dr. Monish Mukul Das and has been published by Chyren Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-04 with Antiques & Collectibles categories.




Deep Learning In Bioinformatics


Deep Learning In Bioinformatics
DOWNLOAD
Author : Habib Izadkhah
language : en
Publisher: Academic Press
Release Date : 2022-01-08

Deep Learning In Bioinformatics written by Habib Izadkhah and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-08 with Science categories.


Deep Learning in Bioinformatics: Techniques and Applications in Practice introduces the topic in an easy-to-understand way, exploring how it can be utilized for addressing important problems in bioinformatics, including drug discovery, de novo molecular design, sequence analysis, protein structure prediction, gene expression regulation, protein classification, biomedical image processing and diagnosis, biomolecule interaction prediction, and in systems biology. The book also presents theoretical and practical successes of deep learning in bioinformatics, pointing out problems and suggesting future research directions. Dr. Izadkhah provides valuable insights and will help researchers use deep learning techniques in their biological and bioinformatics studies. - Introduces deep learning in an easy-to-understand way - Presents how deep learning can be utilized for addressing some important problems in bioinformatics - Presents the state-of-the-art algorithms in deep learning and bioinformatics - Introduces deep learning libraries in bioinformatics



Artificial Intelligence In Bioinformatics


Artificial Intelligence In Bioinformatics
DOWNLOAD
Author : Mario Cannataro
language : en
Publisher: Elsevier
Release Date : 2022-05-18

Artificial Intelligence In Bioinformatics written by Mario Cannataro and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-18 with Computers categories.


Artificial Intelligence in Bioinformatics: From Omics Analysis to Deep Learning and Network Mining reviews the main applications of the topic, from omics analysis to deep learning and network mining. The book includes a rigorous introduction on bioinformatics, also reviewing how methods are incorporated in tasks and processes. In addition, it presents methods and theory, including content for emergent fields such as Sentiment Analysis and Network Alignment. Other sections survey how Artificial Intelligence is exploited in bioinformatics applications, including sequence analysis, structure analysis, functional analysis, protein classification, omics analysis, biomarker discovery, integrative bioinformatics, protein interaction analysis, metabolic networks analysis, and much more. Bridges the gap between computer science and bioinformatics, combining an introduction to Artificial Intelligence methods with a systematic review of its applications in the life sciences Brings readers up-to-speed on current trends and methods in a dynamic and growing field Provides academic teachers with a complete resource, covering fundamental concepts as well as applications



Deep Learning In Biology And Medicine


Deep Learning In Biology And Medicine
DOWNLOAD
Author : Davide Bacciu
language : en
Publisher: World Scientific
Release Date : 2022-01-17

Deep Learning In Biology And Medicine written by Davide Bacciu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-17 with Computers categories.


Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.



Omics


Omics
DOWNLOAD
Author : Debmalya Barh
language : en
Publisher: CRC Press
Release Date : 2013-03-26

Omics written by Debmalya Barh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-26 with Medical categories.


With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.



Deep Learning And Parallel Computing Environment For Bioengineering Systems


Deep Learning And Parallel Computing Environment For Bioengineering Systems
DOWNLOAD
Author : Arun Kumar Sangaiah
language : en
Publisher: Academic Press
Release Date : 2019-07-26

Deep Learning And Parallel Computing Environment For Bioengineering Systems written by Arun Kumar Sangaiah and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-26 with Technology & Engineering categories.


Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data



Data Analytics In Bioinformatics


Data Analytics In Bioinformatics
DOWNLOAD
Author : Rabinarayan Satpathy
language : en
Publisher: John Wiley & Sons
Release Date : 2021-01-20

Data Analytics In Bioinformatics written by Rabinarayan Satpathy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-20 with Computers categories.


Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.



Neural Networks Tricks Of The Trade


Neural Networks Tricks Of The Trade
DOWNLOAD
Author : Grégoire Montavon
language : en
Publisher: Springer
Release Date : 2012-11-14

Neural Networks Tricks Of The Trade written by Grégoire Montavon and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-14 with Computers categories.


The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Supervised Sequence Labelling With Recurrent Neural Networks


Supervised Sequence Labelling With Recurrent Neural Networks
DOWNLOAD
Author : Alex Graves
language : en
Publisher: Springer
Release Date : 2012-02-06

Supervised Sequence Labelling With Recurrent Neural Networks written by Alex Graves and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-06 with Computers categories.


Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.