[PDF] Deep Learning Powered Technologies - eBooks Review

Deep Learning Powered Technologies


Deep Learning Powered Technologies
DOWNLOAD

Download Deep Learning Powered Technologies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Powered Technologies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning Powered Technologies


Deep Learning Powered Technologies
DOWNLOAD
Author : Khaled Salah Mohamed
language : en
Publisher: Springer Nature
Release Date : 2023-06-23

Deep Learning Powered Technologies written by Khaled Salah Mohamed and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-23 with Technology & Engineering categories.


This book covers various, leading-edge deep learning technologies. The author discusses new applications of deep learning and gives insight into the integration of deep learning with various application domains, such as autonomous driving, augmented reality, AIOT, 5G and beyond.



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Deep Learning


Deep Learning
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2019-09-10

Deep Learning written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-10 with Computers categories.


An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.



The Future Of Ai Machine Learning Deep Learning And Natural Language Processing


The Future Of Ai Machine Learning Deep Learning And Natural Language Processing
DOWNLOAD
Author : Dr.Konda Hari Krishna
language : en
Publisher: Leilani Katie Publication
Release Date : 2025-04-03

The Future Of Ai Machine Learning Deep Learning And Natural Language Processing written by Dr.Konda Hari Krishna and has been published by Leilani Katie Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-03 with Computers categories.


Dr.Konda Hari Krishna, Associate Professor, Department of CSE, School of Computing, Mohan Babu University, Tirupati, Andhra Pradesh, India. Ms.S.Thulasi Bharathi, Assistant Professor, Department of Computer Science, St. Joseph’s College (Autonomous), Tiruchirappalli, Tamil Nadu, India Dr.N.Thinaharan, Assistant Professor, Department of Computer Science, Thanthai Hans Roever College (Autonomous), Perambalur, Tamil Nadu, India. Dr.Bhavani.K, Professor, Institute of CSE, Department of Spatial Informatics, Saveetha School of Engineering, SIMATS University, Chennai, Tamil Nadu, India.



Artificial Intelligence And Machine Learning Powered Smart Finance


Artificial Intelligence And Machine Learning Powered Smart Finance
DOWNLOAD
Author : Taneja, Sanjay
language : en
Publisher: IGI Global
Release Date : 2024-02-12

Artificial Intelligence And Machine Learning Powered Smart Finance written by Taneja, Sanjay and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-12 with Business & Economics categories.


In the field of finance, the pervasive influence of algorithms has transformed the very fabric of the industry. Today, over 75% of trades are orchestrated by algorithms, making them the linchpin for trade automation, predictions, and decision-making. This algorithmic reliance, while propelling financial services into unprecedented efficiency, has also ushered in a host of challenges. As the financial sector becomes increasingly algorithm-driven, concerns about risk assessment, market manipulation, and the ethical implications of automated decision-making have taken center stage. Artificial Intelligence and Machine Learning-Powered Smart Finance, meticulously examines the intersection of computational finance and advanced algorithms and the challenges associated with this technology. As algorithms permeate various facets of financial services, the book takes a deep dive into their applications, spanning forecasting, portfolio optimization, market trends analysis, and cryptoanalysis. It sheds light on the role of AI-based algorithms in personnel selection, implementing trusted financial services, developing recommendation systems for financial platforms, and detecting fraud, presenting a compelling case for the integration of innovative solutions in the financial sector. As the book unravels the intricate tapestry of algorithmic applications in finance, it also illuminates the ethical considerations and governance frameworks essential for navigating the delicate balance between technological innovation and responsible financial practices.



The Deep Learning Revolution


The Deep Learning Revolution
DOWNLOAD
Author : Terrence J. Sejnowski
language : en
Publisher: MIT Press
Release Date : 2018-10-23

The Deep Learning Revolution written by Terrence J. Sejnowski and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Computers categories.


Explore how deep learning—from Google Translate and Siri to driverless cars—is changing our lives and transforming every sector of the economy. “An important and timely book, written by a gifted scientist at the cutting edge of the AI revolution.” —Nature The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Deep Learning Technologies


Deep Learning Technologies
DOWNLOAD
Author : Dr.VV.Sunil Kumar
language : en
Publisher: Leilani Katie Publication
Release Date : 2025-01-22

Deep Learning Technologies written by Dr.VV.Sunil Kumar and has been published by Leilani Katie Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-22 with Computers categories.


Dr.VV.Sunil Kumar, Professor, Department of Computer Science and Engineering, PBR Visvodaya Institute of Technology and Science, Kavali, SPSR Nellore, Andhra Pradesh, India. Dr.G.Vijay Kumar, Professor, Department of Computer Science and Engineering, PBR Visvodaya Institute of Technology and Science, Kavali, SPSR Nellore, Andhra Pradesh, India.



Deep Learning And Parallel Computing Environment For Bioengineering Systems


Deep Learning And Parallel Computing Environment For Bioengineering Systems
DOWNLOAD
Author : Arun Kumar Sangaiah
language : en
Publisher: Academic Press
Release Date : 2019-07-26

Deep Learning And Parallel Computing Environment For Bioengineering Systems written by Arun Kumar Sangaiah and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-26 with Technology & Engineering categories.


Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data



Machine Learning And Deep Learning In Real Time Applications


Machine Learning And Deep Learning In Real Time Applications
DOWNLOAD
Author : Paawan Sharma
language : en
Publisher: Engineering Science Reference
Release Date : 2020

Machine Learning And Deep Learning In Real Time Applications written by Paawan Sharma and has been published by Engineering Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.