Deep Learning Theory Architectures And Applications In Speech Image And Language Processing

DOWNLOAD
Download Deep Learning Theory Architectures And Applications In Speech Image And Language Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Theory Architectures And Applications In Speech Image And Language Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning Theory Architectures And Applications In Speech Image And Language Processing
DOWNLOAD
Author : Gyanendra Verma
language : en
Publisher: Bentham Science Publishers
Release Date : 2023-08-21
Deep Learning Theory Architectures And Applications In Speech Image And Language Processing written by Gyanendra Verma and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-21 with Computers categories.
This book is a detailed reference guide on deep learning and its applications. It aims to provide a basic understanding of deep learning and its different architectures that are applied to process images, speech, and natural language. It explains basic concepts and many modern use cases through fifteen chapters contributed by computer science academics and researchers. By the end of the book, the reader will become familiar with different deep learning approaches and models, and understand how to implement various deep learning algorithms using multiple frameworks and libraries. This book is divided into three parts. The first part explains the basic operating understanding, history, evolution, and challenges associated with deep learning. The basic concepts of mathematics and the hardware requirements for deep learning implementation, and some of its popular frameworks for medical applications are also covered. The second part is dedicated to sentiment analysis using deep learning and machine learning techniques. This book section covers the experimentation and application of deep learning techniques and architectures in real-world applications. It details the salient approaches, issues, and challenges in building ethically aligned machines. An approach inspired by traditional Eastern thought and wisdom is also presented. The final part covers artificial intelligence approaches used to explain the machine learning models that enhance transparency for the benefit of users. A review and detailed description of the use of knowledge graphs in generating explanations for black-box recommender systems and a review of ethical system design and a model for sustainable education is included in this section. An additional chapter demonstrates how a semi-supervised machine learning technique can be used for cryptocurrency portfolio management. The book is a timely reference for academicians, professionals, researchers and students at engineering and medical institutions working on artificial intelligence applications.
Deep Learning
DOWNLOAD
Author : Gyanendra Verma
language : en
Publisher: Bentham Science Publishers
Release Date : 2023-08-21
Deep Learning written by Gyanendra Verma and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-21 with categories.
This book is a detailed reference guide on deep learning and its applications. It aims to provide a basic understanding of deep learning and its different architectures that are applied to process images, speech, and natural language. It explains basic concepts and many modern use cases through fifteen chapters contributed by computer science academics and researchers. By the end of the book, the reader will become familiar with different deep learning approaches and models, and understand how to implement various deep learning algorithms using multiple frameworks and libraries. This book is divided into three parts. The first part explains the basic operating understanding, history, evolution, and challenges associated with deep learning. The basic concepts of mathematics and the hardware requirements for deep learning implementation, and some of its popular frameworks for medical applications are also covered. The second part is dedicated to sentiment analysis using deep learning and machine learning techniques. This book section covers the experimentation and application of deep learning techniques and architectures in real-world applications. It details the salient approaches, issues, and challenges in building ethically aligned machines. An approach inspired by traditional Eastern thought and wisdom is also presented. The final part covers artificial intelligence approaches used to explain the machine learning models that enhance transparency for the benefit of users. A review and detailed description of the use of knowledge graphs in generating explanations for black-box recommender systems and a review of ethical system design and a model for sustainable education is included in this section. An additional chapter demonstrates how a semi-supervised machine learning technique can be used for cryptocurrency portfolio management. The book is a timely reference for academicians, professionals, researchers and students at engineering and medical institutions working on artificial intelligence applications.
Deep Learning
DOWNLOAD
Author : Li Deng
language : en
Publisher:
Release Date : 2014
Deep Learning written by Li Deng and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Machine learning categories.
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26
The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Deep Learning For Nlp And Speech Recognition
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2019-06-10
Deep Learning For Nlp And Speech Recognition written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-10 with Computers categories.
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Spoken Language Understanding
DOWNLOAD
Author : Gokhan Tur
language : en
Publisher: John Wiley & Sons
Release Date : 2011-05-03
Spoken Language Understanding written by Gokhan Tur and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-03 with Language Arts & Disciplines categories.
Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, using differing tasks and approaches to better understand and utilize such communications. This book covers the state-of-the-art approaches for the most popular SLU tasks with chapters written by well-known researchers in the respective fields. Key features include: Presents a fully integrated view of the two distinct disciplines of speech processing and language processing for SLU tasks. Defines what is possible today for SLU as an enabling technology for enterprise (e.g., customer care centers or company meetings), and consumer (e.g., entertainment, mobile, car, robot, or smart environments) applications and outlines the key research areas. Provides a unique source of distilled information on methods for computer modeling of semantic information in human/machine and human/human conversations. This book can be successfully used for graduate courses in electronics engineering, computer science or computational linguistics. Moreover, technologists interested in processing spoken communications will find it a useful source of collated information of the topic drawn from the two distinct disciplines of speech processing and language processing under the new area of SLU.
Deep Learning Research Applications For Natural Language Processing
DOWNLOAD
Author : Ashok Kumar, L.
language : en
Publisher: IGI Global
Release Date : 2022-12-09
Deep Learning Research Applications For Natural Language Processing written by Ashok Kumar, L. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-09 with Computers categories.
Humans have the most advanced method of communication, which is known as natural language. While humans can use computers to send voice and text messages to each other, computers do not innately know how to process natural language. In recent years, deep learning has primarily transformed the perspectives of a variety of fields in artificial intelligence (AI), including speech, vision, and natural language processing (NLP). The extensive success of deep learning in a wide variety of applications has served as a benchmark for the many downstream tasks in AI. The field of computer vision has taken great leaps in recent years and surpassed humans in tasks related to detecting and labeling objects thanks to advances in deep learning and neural networks. Deep Learning Research Applications for Natural Language Processing explains the concepts and state-of-the-art research in the fields of NLP, speech, and computer vision. It provides insights into using the tools and libraries in Python for real-world applications. Covering topics such as deep learning algorithms, neural networks, and advanced prediction, this premier reference source is an excellent resource for computational linguists, software engineers, IT managers, computer scientists, students and faculty of higher education, libraries, researchers, and academicians.
Speech And Language Processing
DOWNLOAD
Author : Daniel Jurafsky
language : en
Publisher:
Release Date : 2000-01
Speech And Language Processing written by Daniel Jurafsky and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-01 with Automatic speech recognition categories.
This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing.
Computer Vision Imaging And Computer Graphics Theory And Applications
DOWNLOAD
Author : A. Augusto de Sousa
language : en
Publisher: Springer Nature
Release Date : 2023-10-17
Computer Vision Imaging And Computer Graphics Theory And Applications written by A. Augusto de Sousa and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-17 with Computers categories.
This book constitutes the referred proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2022, Virtual Event, February 6–8, 2022. The 15 full papers included in this book were carefully reviewed and selected from 392 submissions. The purpose of VISIGRAPP is to bring together researchers and practitioners interested in both theoretical advances and applications of computer vision, computer graphics and information visualization. VISIGRAPP is composed of four co-located conferences, each specialized in at least one of the aforementioned main knowledge areas, namely GRAPP, IVAPP, HUCAPP and VISAPP.