Deep Network Design For Medical Image Computing

DOWNLOAD
Download Deep Network Design For Medical Image Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Network Design For Medical Image Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Network Design For Medical Image Computing
DOWNLOAD
Author : Haofu Liao
language : en
Publisher: Academic Press
Release Date : 2022-08-24
Deep Network Design For Medical Image Computing written by Haofu Liao and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-24 with Computers categories.
Deep Network Design for Medical Image Computing: Principles and Applications covers a range of MIC tasks and discusses design principles of these tasks for deep learning approaches in medicine. These include skin disease classification, vertebrae identification and localization, cardiac ultrasound image segmentation, 2D/3D medical image registration for intervention, metal artifact reduction, sparse-view artifact reduction, etc. For each topic, the book provides a deep learning-based solution that takes into account the medical or biological aspect of the problem and how the solution addresses a variety of important questions surrounding architecture, the design of deep learning techniques, when to introduce adversarial learning, and more. This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems. - Explains design principles of deep learning techniques for MIC - Contains cutting-edge deep learning research on MIC - Covers a broad range of MIC tasks, including the classification, detection, segmentation, registration, reconstruction and synthesis of medical images
Deep Learning For Medical Image Analysis
DOWNLOAD
Author : S. Kevin Zhou
language : en
Publisher: Academic Press
Release Date : 2017-01-18
Deep Learning For Medical Image Analysis written by S. Kevin Zhou and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-18 with Computers categories.
Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache
Handbook Of Deep Learning In Biomedical Engineering
DOWNLOAD
Author : Valentina Emilia Balas
language : en
Publisher: Academic Press
Release Date : 2020-11-12
Handbook Of Deep Learning In Biomedical Engineering written by Valentina Emilia Balas and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-12 with Science categories.
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Medical Image Analysis
DOWNLOAD
Author : Alejandro Frangi
language : en
Publisher: Academic Press
Release Date : 2023-09-20
Medical Image Analysis written by Alejandro Frangi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-20 with Technology & Engineering categories.
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Trustworthy Ai In Medical Imaging
DOWNLOAD
Author : Marco Lorenzi
language : en
Publisher: Elsevier
Release Date : 2024-11-25
Trustworthy Ai In Medical Imaging written by Marco Lorenzi and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-25 with Computers categories.
Trustworthy AI in Medical Imaging brings together scientific researchers, medical experts, and industry partners working in the field of trustworthiness, bridging the gap between AI research and concrete medical applications and making it a learning resource for undergraduates, masters students, and researchers in AI for medical imaging applications. The book will help readers acquire the basic notions of AI trustworthiness and understand its concrete application in medical imaging, identify pain points and solutions to enhance trustworthiness in medical imaging applications, understand current limitations and perspectives of trustworthy AI in medical imaging, and identify novel research directions. Although the problem of trustworthiness in AI is actively researched in different disciplines, the adoption and implementation of trustworthy AI principles in real-world scenarios is still at its infancy. This is particularly true in medical imaging where guidelines and standards for trustworthiness are critical for the successful deployment in clinical practice. After setting out the technical and clinical challenges of AI trustworthiness, the book gives a concise overview of the basic concepts before presenting state-of-the-art methods for solving these challenges. - Introduces the key concepts of trustworthiness in AI. - Presents state-of-the-art methodologies for trustworthy AI in medical imaging. - Outlines major initiatives focusing on real-world deployment of trustworthy principles in medical imaging applications. - Presents outstanding questions still to be solved and discusses future research directions.
Medical Image Computing And Computer Assisted Intervention Miccai 2021
DOWNLOAD
Author : Marleen de Bruijne
language : en
Publisher: Springer Nature
Release Date : 2021-09-22
Medical Image Computing And Computer Assisted Intervention Miccai 2021 written by Marleen de Bruijne and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.
The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound *The conference was held virtually.
Medical Image Computing And Computer Assisted Intervention Miccai 2015
DOWNLOAD
Author : Nassir Navab
language : en
Publisher: Springer
Release Date : 2015-12-02
Medical Image Computing And Computer Assisted Intervention Miccai 2015 written by Nassir Navab and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-02 with Computers categories.
The three-volume set LNCS 9349, 9350, and 9351 constitutes the refereed proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, held in Munich, Germany, in October 2015. Based on rigorous peer reviews, the program committee carefully selected 263 revised papers from 810 submissions for presentation in three volumes. The papers have been organized in the following topical sections: quantitative image analysis I: segmentation and measurement; computer-aided diagnosis: machine learning; computer-aided diagnosis: automation; quantitative image analysis II: classification, detection, features, and morphology; advanced MRI: diffusion, fMRI, DCE; quantitative image analysis III: motion, deformation, development and degeneration; quantitative image analysis IV: microscopy, fluorescence and histological imagery; registration: method and advanced applications; reconstruction, image formation, advanced acquisition - computational imaging; modelling and simulation for diagnosis and interventional planning; computer-assisted and image-guided interventions.
Medical Image Recognition Segmentation And Parsing
DOWNLOAD
Author : S. Kevin Zhou
language : en
Publisher: Academic Press
Release Date : 2015-12-11
Medical Image Recognition Segmentation And Parsing written by S. Kevin Zhou and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-11 with Computers categories.
This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: - Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects - Methods and theories for medical image recognition, segmentation and parsing of multiple objects - Efficient and effective machine learning solutions based on big datasets - Selected applications of medical image parsing using proven algorithms - Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects - Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets - Includes algorithms for recognizing and parsing of known anatomies for practical applications
Medical Image Computing And Computer Assisted Intervention Miccai 2019
DOWNLOAD
Author : Dinggang Shen
language : en
Publisher: Springer Nature
Release Date : 2019-10-10
Medical Image Computing And Computer Assisted Intervention Miccai 2019 written by Dinggang Shen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-10 with Computers categories.
The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.
Artificial Intelligence And Machine Learning In 2d 3d Medical Image Processing
DOWNLOAD
Author : Rohit Raja
language : en
Publisher: CRC Press
Release Date : 2020-12-23
Artificial Intelligence And Machine Learning In 2d 3d Medical Image Processing written by Rohit Raja and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-23 with Technology & Engineering categories.
Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication, immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues. This process pursues disorder identification and management. Medical imaging in 2D and 3D includes many techniques and operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space, clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology. This book highlights the framework of the robust and novel methods for medical image processing techniques in 2D and 3D. The chapters explore existing and emerging image challenges and opportunities in the medical field using various medical image processing techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing. The authors also discuss implementation strategies and future research directions for the design and application requirements of these systems. This book will benefit researchers in the medical image processing field as well as those looking to promote the mutual understanding of researchers within different disciplines that incorporate AI and machine learning. FEATURES Highlights the framework of robust and novel methods for medical image processing techniques Discusses implementation strategies and future research directions for the design and application requirements of medical imaging Examines real-time application needs Explores existing and emerging image challenges and opportunities in the medical field