[PDF] Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications - eBooks Review

Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications


Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications
DOWNLOAD

Download Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications


Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications
DOWNLOAD
Author : Dong Ji
language : en
Publisher:
Release Date : 2017

Design And Development Of Gan Based Vertical Transistors For Increased Power Density In Power Electronics Applications written by Dong Ji and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


Gallium nitride (GaN)-based devices have entered the power electronics market and shown excellent progress in the medium power conversion applications. For power conversions applications > 10 kW, devices with vertical geometry are preferred over lateral geometry, since the former allows more current for a given chip area, thus provides a more economical solution for high-voltage and high-current applications. Moreover, the vertical geometry is attractive for its dispersion-free performance without passivation, a phenomenon that causes high dynamic on-state resistance (R[subscript on]) in lateral geometry high electron mobility transistors (HEMTs). In this study, GaN-based vertical transistors, which include trench current aperture vertical electron transistors (CAVETs) and in-situ oxide, GaN interlayer based trench field-effect transistors (OGFETs), have been studied both theoretically and experimentally. In order to model the devices for DC and switching performances, a device/circuit hybrid simulation platform was developed based on Silvaco ATLAS. The validation of the model was obtained by calibrating it against commercially available HEMT data. Using this hybrid model, one can start with a two-dimensional (2D) drift-diffusion model of the device and build all the way up to its circuit implementation to evaluate its switching performance. The hybrid model offers an inexpensive and accurate way to project and benchmark the performance and can be extended to any GaN-based power transistors.In the experimental portion of this study, a high voltage OGFET was designed and fabricated. An OGFET shows improved characteristics owing to a 10 nm unintentionally doped (UID) GaN interlayer as the channel. A normally-off (V[subscript th] = 4 V) vertical GaN OGFET with 10 nm UID-GaN channel interlayer and 50 nm in-situ Al2O3 was successfully demonstrated and scaled for higher current operation. By using a novel double-field-plated structure for mitigating peak electric field, a higher off-state breakdown voltage over 1.4 kV was achieved with a significantly low specific on-state resistance (R[subscript on,sp]) of 2.2 m[omega] cm2. The metal-organic chemical vapor deposition (MOCVD) regrown 10 nm GaN channel interlayer enabled a channel resistance lower than 10 [omega] mm with an average channel electron mobility of 185 cm2/Vs. The fabricated large area transistor with a total area of 0.4 mm × 0.5 mm offered a breakdown voltage of 900 V and an Ron of 4.1 [omega]. Results indicate the potential of vertical GaN OGFET for greater than 1 kV range of power electronics applications.In addition to the OGFET, the CAVET with a trench gate structure was studied in this work. By taking advantage of the two-dimensional electron gas (2DEG) in the AlGaN/GaN structure, the trench CAVET can secure an even higher channel electron mobility compared to the OGFET. The first functional trench CAVET with a metal-insulator-semiconductor (MIS) gate structure was fabricated in this work with a breakdown voltage of about 225 V. With the improvement in the fabrication process, an 880 V device with an R[subscript on,sp] of 2.7 m[omega] cm2 was demonstrated. One of the notable features of the fabricated trench CAVET is that it requires a standard MOCVD growth condition for HEMT epilayers. The simplification of the growth process is a significant achievement. Finally, a regrowth-free CAVET was demonstrated and patented. The transformative approach was realized using Si ion implantation based doping compensation in the aperture.



Wide Bandgap Semiconductor Power Devices


Wide Bandgap Semiconductor Power Devices
DOWNLOAD
Author : B. Jayant Baliga
language : en
Publisher: Woodhead Publishing
Release Date : 2018-10-17

Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and has been published by Woodhead Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-17 with Technology & Engineering categories.


Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact



Gan Based Vertical Power Devices


Gan Based Vertical Power Devices
DOWNLOAD
Author : Yuhao Zhang (Ph. D.)
language : en
Publisher:
Release Date : 2017

Gan Based Vertical Power Devices written by Yuhao Zhang (Ph. D.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


Power electronics based on Gallium Nitride (GaN) is expected to significantly reduce the losses in power conversion circuits and increase the power density. This makes GaN devices very exciting candidates for next-generation power electronics, for the applications in electric vehicles, data centers, high-power and high-frequency communications. Currently, both lateral and vertical structures are considered for GaN power devices. In particular, vertical GaN power devices have attracted significant attention recently, due to the potential for achieving high breakdown voltage and current levels without enlarging the chip size. In addition, these vertical devices show superior thermal performance than their lateral counterparts. This PhD thesis addresses several key obstacles in developing vertical GaN power devices. The commercialization of vertical GaN power devices has been hindered by the high cost of bulk GaN. The first project in this PhD thesis demonstrated the feasibility of making vertical devices on a low-cost silicon (Si) substrate for the first time. The demonstrated high performance shows the great potential of low-cost vertical GaN-on-Si devices for 600-V level high-current and high-power applications. This thesis has also studied the origin of the off-state leakage current in vertical GaN pn diodes on Si, sapphire and GaN substrates, by experiments, analytical calculations and TCAD simulations. Variable-range-hopping through threading dislocations was identified as the main off-state leakage mechanism in these devices. The design space of leakage current of vertical GaN devices has been subsequently derived. Thirdly, a novel GaN vertical Schottky rectifier with trench MIS structures and trench field rings was demonstrated. The new structure greatly enhanced the reverse blocking characteristics while maintaining a Schottky-like good forward conduction. This new device shows great potential for using advanced vertical Schottky rectifiers for high-power and high-frequency applications. Finally, we investigated a fundamental and significant challenge for GaN power devices: the lack of reliable and generally useable patterned pn junctions. Two approaches have been proposed to make lateral patterned pn junctions. Two devices, junction barrier Schottky devices and super-junction devices, have been designed and optimized. Preliminary experimental results were also demonstrated for the feasibility of making patterned pn junctions and fabricating novel power devices.



Wide Bandgap Semiconductor Electronics And Devices


Wide Bandgap Semiconductor Electronics And Devices
DOWNLOAD
Author : Uttam Singisetti
language : en
Publisher: World Scientific
Release Date : 2019-12-10

Wide Bandgap Semiconductor Electronics And Devices written by Uttam Singisetti and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-10 with Technology & Engineering categories.


'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.



Power Gan Devices


Power Gan Devices
DOWNLOAD
Author : Matteo Meneghini
language : en
Publisher: Springer
Release Date : 2016-09-08

Power Gan Devices written by Matteo Meneghini and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-08 with Technology & Engineering categories.


This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.



Simulation And Fabrication Of Gan Based Vertical And Lateral Normally Off Power Transistors


Simulation And Fabrication Of Gan Based Vertical And Lateral Normally Off Power Transistors
DOWNLOAD
Author : Yuhao Zhang (S.M.)
language : en
Publisher:
Release Date : 2013

Simulation And Fabrication Of Gan Based Vertical And Lateral Normally Off Power Transistors written by Yuhao Zhang (S.M.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.


This thesis is divided in two parts. First, self-consistent electro-thermal simulations have been performed for single finger and multi-finger GaN-based vertical and lateral power transistors and were validated with experimental DC characteristics. The models were used to study the thermal performance of GaN-based vertical metal oxide semiconductor field-effect transistors (MOSFETs) and the lateral high electron mobility transistors (HEMTs) designed for different breakdown voltage application and at different size scaling levels. The comparison between two structures revealed that the vertical MOSFETs have the potential to achieve an up to 50% higher thermal performance, especially for higher breakdown voltage and higher size scaling level designs. Second, normally-off lateral MOS-HEMTs were developed by the combination of fluorine plasma treatment and high-temperature gate oxide deposition. Record performances have been achieved for the fluorinated MOS-HEMTs with a threshold voltage >3.5 V, a low on-resistance ~ 2 m[Omega]·cm2, a small threshold voltage hysteresis ~0.15 V, high enhancement-mode channel mobility ~ 1000 cm2V-1s-1, a breakdown voltage ~ 780 V, no current collapse and a stability with 24 h continuous on-state operation at 250 oC. In addition, an analytical model for the threshold voltage of fluorinated MOS-HEMTs was established for the first time, to enable accurate design and engineering of the threshold voltage for MOS-HEMTs. This novel technology has been demonstrated as promising to fabricate high-performance normally-off MOS-HEMTs.



Wide Bandgap Based Devices


Wide Bandgap Based Devices
DOWNLOAD
Author : Farid Medjdoub
language : en
Publisher: MDPI
Release Date : 2021-05-26

Wide Bandgap Based Devices written by Farid Medjdoub and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-26 with Technology & Engineering categories.


Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices



Design And Fabrication Of Nitrogen Polar Gallium Nitride Vertical Transistors For High Power And High Frequency Applications


Design And Fabrication Of Nitrogen Polar Gallium Nitride Vertical Transistors For High Power And High Frequency Applications
DOWNLOAD
Author : Saba Rajabi
language : en
Publisher:
Release Date : 2018

Design And Fabrication Of Nitrogen Polar Gallium Nitride Vertical Transistors For High Power And High Frequency Applications written by Saba Rajabi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


Gallium nitride (GaN) has remarkable potential to extend the silicon-based semiconductor industry, which is currently plateauing in performance due to its materials limits Any significant improvement comes with a price that may not be a sustainable way to support the need for next generation electronic devices. With a more efficient semiconductor, such as a GaN, engineers could design and fabricate compact devices with ultra-high-scale density, because of GaN’s high electric field strength, saturation velocity, and electron mobility. Studies have already indicated that GaN device technology has tremendous potential for high-frequency communications and photonic applications. Because of advances in growth on commercially feasible large-area substrates, high radio frequency (RF) power applications of GaN are approaching commercialization. The basic material properties of GaN translate to smaller devices, which can lead to higher operation frequencies and lower switching losses. At the same time, the component count and size of passives has decreased. To date, most reported GaN-based field effect transistors have been in a Gallium polar (Ga-polar) orientation. Recent reports have suggested that Nitrogen polar (N-polar) GaN device technology is highly attractive for high RF power applications. The reverse polarization field in N-polar GaN compared to Ga-polar GaN promises unique design advantages. For example, an Al(Ga)N back barrier induces two-dimensional electron gas (2DEG) in the GaN channel and simultaneously confines electrons into the channel. Because of improved electron confinement in the channel and the higher aspect ratio, N-polar devices can presumably achieve superior performance. Additionally, N-polar devices offer lower specific contact resistance since the contacts to the 2DEG occur through GaN rather than wider-bandgap AlGaN material, which is necessary in Ga-polar devices. Previous results have clearly established that vertical devices in the form of current aperture vertical electron transistors (CAVETs) produce dispersion-less output current-voltage (IV) characteristics with a higher blocking electric field than that of lateral devices. The electric field being buried in the bulk of the material is helpful to achieve dispersion-less output characteristics compared to high electron mobility transistors (HEMTs), where surface states cause “knee walkout” or current collapse under high frequencies. Therefore, merging a N-polar high aspect ratio channel with a vertical drift region, as a CAVET does, is an attractive design to accomplish higher RF power performance compared to lateral counterparts. An integral part of a CAVET is the current blocking layer (CBL), which blocks the current flow from all paths except the aperture. Ga-polar CAVETs have been developed with either a Mg-doped GaN CBL or [Mg2+] ion-implanted GaN CBL. The latter is an attractive technique since it can alleviate regrowth in trenches. Notably, Mg ions diffuse out during the channel regrowth process at high temperatures. An AlN interlayer with a thickness of less than a nanometer is an effective solution to stop Mg ions from diffusing out into the channel layer and thereby causing uncontrollable threshold voltage shifts. It is crucial to mention that an AlN back barrier is an essential part of the structure of a vertical N-polar device design, as it is necessary to form the 2DEG channel as well as a diffusion barrier to arrest Mg out-diffusion. Thus, it renders N-polar vertical devices an especially appealing class of devices for RF application.This dissertation aims to provide a physical understanding and insight regarding the N-polar CAVET as well as the device’s design, performance and thermal analysis.



Gan Transistors For Efficient Power Conversion


Gan Transistors For Efficient Power Conversion
DOWNLOAD
Author : Alex Lidow
language : en
Publisher: John Wiley & Sons
Release Date : 2019-08-12

Gan Transistors For Efficient Power Conversion written by Alex Lidow and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-12 with Science categories.


An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.



Wide Bandgap Semiconductor Materials And Devices 16


Wide Bandgap Semiconductor Materials And Devices 16
DOWNLOAD
Author : S. Jang
language : en
Publisher: The Electrochemical Society
Release Date : 2015

Wide Bandgap Semiconductor Materials And Devices 16 written by S. Jang and has been published by The Electrochemical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.