[PDF] Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete - eBooks Review

Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete


Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete
DOWNLOAD

Download Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete


Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete
DOWNLOAD
Author : fib Fédération internationale du béton
language : en
Publisher: fib Fédération internationale du béton
Release Date : 2002-01-01

Design Examples Design Examples For The 1996 Fip Recommendations Practical Design Of Structural Concrete written by fib Fédération internationale du béton and has been published by fib Fédération internationale du béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Technology & Engineering categories.


The 1996 FIP Recommendations Practical Design of Structural Concretewere finally published by SETO in September 1999. They had been developed based on the 1990 CEB-FIP Model Code. The main objective of this Bulletin is now to demonstrate by practical examples the application of these recommendations, and especially to illustrate the use of strut-and-tie models for designing discontinuity regions in concrete structures. These examples represent also a continuation of the 1990 FIP Handbook on Practical Design that had been based on the former (1984) version of the recommendations. Most of the examples are recently built existing structures. Although some of them may be considered as quite important, the chosen examples are by no means exceptional. The technical report does not deal with the discussion of aesthetic or general conceptual aspects. On the contrary, the main aim is to treat particular design aspects by selecting local regions of the chosen structures, that are then designed and detailed following the design principles and specifications proposed in the 1996 FIP Recommendations mentioned above. The document is believed to be of interest to all engaged in the design of structural concrete. It hopefully supports the use of more consistent design and detailing tools like strut-and-tie models.



Sustainability Of Precast Structures


Sustainability Of Precast Structures
DOWNLOAD
Author : FIB – International Federation for Structural Concrete
language : en
Publisher: FIB - Féd. Int. du Béton
Release Date : 2018-12-01

Sustainability Of Precast Structures written by FIB – International Federation for Structural Concrete and has been published by FIB - Féd. Int. du Béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-01 with Technology & Engineering categories.


Sustainability is a crucial concept. Sustainability was first introduced in the fib by creating a Special Activity Group under the convenorship of Prof Sakai. This group encouraged and helped all fib commissions to create their own groups dealing with sustainability. The fib Commission 6 “Prefabrication” took up this challenge and created a Task Group called “Sustainability of Structures with Precast Elements” in 2012. The group was created as a joint group with PCI (Precast Concrete Institute of USA), with the then-active fib Commission 3 “Environmental aspects of design and construction”, and the fib’s SAG8 on Sustainability. Therefore, this Bulletin 88 is a joint publication between PCI and fib. The aim of the work was to gather and study the most recent work that has been developed regarding sustainability – and more particularly Life Cycle Assessment - of structures in which precast elements are used. The final aim of the group would be to provide recommendations for the study and assessment of structures built with precast elements. It will cover all aspects of this kind of structure, from planning, design, execution, use, maintenance and remedial activities to deconstruction, reuse, demolition and recycling. The fib holds sustainability as a high priority, which triggered the creation of a new Commission 7 “Sustainability” during the 2015 fib commissions reorganisation. This commission has been chaired since then by Prof Hájek. Sustainability concepts were already introduced in the Model Code 2010 and are a key part in the elaboration of the Model Code 2020. Experts from many parts of the world contributed to this fib Bulletin 88 which gives the document a broad overview of sustainability sensibilities across different continents. Bulletin 88 starts with a description of the importance of environmental concepts and developments in the world today and the reason why sustainability is a crucial concept that will be even more important in the future. The document then focuses on the different advances of standards and regulations that have been developed or are in the process of being implemented. ISO, European regulations, North American regulations, Brazilian implementation in real precast companies and the developments of the fib Model Codes have been considered in this bulletin. After that, the bulletin examines life cycle aspects of precast structures, taking former fib bulletins as a basis. Then, it moves on to an in-depth study of specific sustainability aspects of precast structures. Then, the bulletin deals with the special methodologies and tools that are available around the world to handle sustainability in general and with precast structures in particular. A selection of tools is described in this chapter. The Task Group also developed proposals about how to deal with the sustainability of precast structures. Some of the proposals are described conceptually in the text. The final chapter compiles several case studies or examples of sustainability applications of precast structures. The examples differ and are grouped by category: buildings, infrastructure and special works.v The task group continues to work on developing other documents that will focus on the detailed practical application of some of the sustainability models described in this document.



Concrete Structures For Oil And Gas Fields In Hostile Marine Environments


Concrete Structures For Oil And Gas Fields In Hostile Marine Environments
DOWNLOAD
Author : fib Fédération internationale du béton
language : en
Publisher: fib Fédération internationale du béton
Release Date : 2008-12-01

Concrete Structures For Oil And Gas Fields In Hostile Marine Environments written by fib Fédération internationale du béton and has been published by fib Fédération internationale du béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-01 with Technology & Engineering categories.


Concrete offshore structures have been successfully delivered to the international oil and gas industry for more than 35 years. Some 50 major concrete platforms of different shapes and sizes, supporting large production and storage facilities, are currently operating in hostile marine environments worldwide and have excellent service records. After some years with little development activity, today there is a renewed interest in robust structures for the Arctic environment, for Liquefied Natural Gas (LNG) terminals and for special floating barges and vessels. Currently, concrete solutions are being considered for projects north and east of Russia, north of Norway and offshore Newfoundland, among others. Concrete is also in increasing demand in built up coastal areas for a variety of purposes such as harbour works, tunnels and bridges, cargo terminals, parking garages and sea front housing developments where durability and robustness are essential. The mandate of fib Task Group 1.5 was to gather the experience and know-how pertinent to the development, design and execution of offshore concrete structures, and to elaborate on the applicability of concrete structures for the Arctic environments. The findings of the Task Group are presented in fib Bulletin 50. The report is based on experience gained from the design, execution and performance of a number of offshore concrete structures around the world and in particular in the North Sea. Ongoing inspections have shown excellent durability and structural performance, even in structures that have exceeded their design lives, in conditions often characterized by extreme wave loads, freezing conditions, hurricane force winds and seismic actions. This forms the "background" for discussing the applicability of concrete structures for the Arctic regions. Although to a large extent dedicated to oil- and gas- related structures, the report is also relevant to other marine applications where the same design principles, material selection criteria and construction methods apply. fib Bulletin 50 is not in itself a code, nor is it a textbook. Rather, extensive reference is made to proven and readily available design codes and construction guides, as well as relevant papers and proceedings and other fib publications.



Design Examples For Strut And Tie Models


Design Examples For Strut And Tie Models
DOWNLOAD
Author : fib Fédération internationale du béton
language : en
Publisher: fib Fédération internationale du béton
Release Date : 2011

Design Examples For Strut And Tie Models written by fib Fédération internationale du béton and has been published by fib Fédération internationale du béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Technology & Engineering categories.


fib Bulletin 61 is a continuation of fib Bulletin 16 (2002). Again the bulletin’s main objective is to demonstrate the application of the FIP Recommendations “Practical Design of Structural Concrete”, and especially to illustrate the use of strut-and-tie models to design discontinuity regions (D-regions) in concrete structures. Bulletin 61 presents 14 examples, most of which are existing structures built in recent years. Although some of the presented structures can be considered to be quite important and, in some instances, complex, the chosen examples are not intended to be exceptional. The main aim is to look at specific design aspects, by selecting D-regions of the presented structures that are designed and detailed according to the proposed design principles and specifications for the use of strut-and-tie models. Two papers at the end of the bulletin deal with the role of concrete tension fields in modelling with strut-and-tie models, and summarize the experiences gained by the Working Group in applying strut-and-tie models to the examples in the bulletin. It is hoped that fib Bulletin 61 will be of interest to engineers involved in the design of concrete structures, supporting the use of more consistent design and detailing tools such as strut-and-tie models.



Constitutive Modelling Of High Strength High Performance Concrete


Constitutive Modelling Of High Strength High Performance Concrete
DOWNLOAD
Author : fib Fédération internationale du béton
language : en
Publisher: fib Fédération internationale du béton
Release Date : 2008-01-01

Constitutive Modelling Of High Strength High Performance Concrete written by fib Fédération internationale du béton and has been published by fib Fédération internationale du béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-01 with Technology & Engineering categories.


High Strength/High Performance Concrete (HSC/HPC) continues to be the object of particular interest and extensive research, and its use in construction is increasing continuously. fib Bulletin 42 summarises the available information on the material behaviour of HSC/HPC, and develops a set of code-type constitutive relations as an extension of CEB-FIP Model Code 1990. Literature on experimental data and international guidelines, standards and recommendations were reviewed, and already-existing constitutive relations and models were evaluated. In addition to a number of material laws chosen and adjusted for this report, some new constitutive relations were developed based on the collected data. The criteria for the choice of the existing relations as well as the development of the new constitutive relations involved their simplicity and operationality (code-type mathematical formulations). Furthermore, they had to be physically sound and if possible describe the behaviour of both high-performance and normal strength concretes by a unique relation. Finally, compliance with the specifications given in the CEB-FIP Model Code 1990 was examined. This State-of-art report is intended for engineers and represents a summary of the relevant knowledge available to and possessed by the members of the Task Group at the time of its drafting.



Precast Concrete In Tall Buildings


Precast Concrete In Tall Buildings
DOWNLOAD
Author : FIB – International Federation for Structural Concrete
language : en
Publisher: FIB - International Federation for Structural Concrete
Release Date : 2021-12-01

Precast Concrete In Tall Buildings written by FIB – International Federation for Structural Concrete and has been published by FIB - International Federation for Structural Concrete this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-01 with Technology & Engineering categories.


There has been continued global growth in tall building construction over recent years. The variation in the use of such buildings is remarkable, from lavish hotels and apartments to socially affordable units. As the world struggles to cope with growing numbers of people, dwindling resources and movements from rural to urban habitats it is unavoidable that population densities will increase, and more efficient use of scarce land will be needed. Taller buildings are the inevitable consequence. Tall buildings can use several different types of material to form their framework and envelope. Those materials are mixed to provide an optimum building solution to suit client requirements such as structure, occupancy, vision, affordability, timing, sustainability and quality. Precast concrete is one of those materials, and has been used from whole frameworks to facades, and elements mixed with structural steelwork and cast in place concrete. This state of the art report shows how precast concrete can be effectively integrated into tall buildings using modern materials and techniques, drawing on the experience and expertise that is currently available in the global precast concrete industry. The report is aimed at not only building professionals and students, but also at contractors, investors, owners, public bodies and any other parties interested in the possibilities for use of precast concrete in tall building construction. Extensive case studies at the end of the Bulletin illustrate the benefits and applications discussed in the earlier chapters.



Precast Concrete Bridge Continuity Over Piers


Precast Concrete Bridge Continuity Over Piers
DOWNLOAD
Author : FIB – International Federation for Structural Concrete
language : en
Publisher: FIB - International Federation for Structural Concrete
Release Date : 2020-07-01

Precast Concrete Bridge Continuity Over Piers written by FIB – International Federation for Structural Concrete and has been published by FIB - International Federation for Structural Concrete this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Technology & Engineering categories.


Concrete bridges are an important part of today's road infrastructure. An important part of those concrete bridges is to a large extent prefabricated. Precast concrete enables all the advantages of an industrialized process to be fully utilized. Contemporary concrete mixtures are used to realize high-strength bridge girders and piers that exactly meet the requirements set, both structurally and aesthetically, with a small ecological footprint. Sustainable and durable! On the construction site, there is no need for complex formwork, the execution time is drastically reduced and where road, water and rail traffic on or under the bridge has to be temporarily interrupted, it is only minimally inconvenienced during the execution of the project. There is a wide variety of prefabricated bridges. In 2004, the fib commission on prefabrication already published the Bulletin 29 Precast concrete bridges which, in addition to the history of prefabricated bridges, also gave an overview of the different bridge types and structural systems. This document elaborates on one specific structural system: the continuous bridge. Task Group 6.5 "Precast concrete bridges" discusses in detail how to achieve continuity over the piers with precast elements. This bulletin bundles the experiences of experts in the field of bridge design so that less experienced designers would be able to identify the points of attention and make a correct design. In addition to the theoretical considerations, the principles are tested against three realizations in the USA and Europe. Commission 6 thanks the Co-Conveners Maher Tadros and Hugo Corres and all active members of the Task Group for sharing their knowledge and experience and for the successful realization of this bulletin.



Precast Concrete Railway Track Systems


Precast Concrete Railway Track Systems
DOWNLOAD
Author : fib Fédération internationale du béton
language : en
Publisher: fib Fédération internationale du béton
Release Date : 2006-01-01

Precast Concrete Railway Track Systems written by fib Fédération internationale du béton and has been published by fib Fédération internationale du béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Technology & Engineering categories.


In 1986, the FIP Commission on Prefabrication issued the state-of-art report "Concrete Railway Sleepers", which included design considerations, manufacturing methods, rail fastening systems and field performance. During the two decades since that report, precast concrete has gained importance in the field of railway track systems for plain track, switches and crossings, tunnels and other applications. Developments in production methods for concrete sleepers in switch and crossing layouts to cope with the complex geometry and the industry's confidence in their performance have contributed to the huge increase in the use of this type of sleeper. The use of slab track for high-speed track has also grown, particularly where either new track is built or where existing track is renewed and long periods of track possession are possible. There has also been progress in the development of plant and equipment for the installation, renewal and maintenance of concrete sleepered track. With machines now able to replace existing track at a rate of 5000 sleepers (over 3 km track) per day, choosing concrete sleepers can reduce the time on site, meaning tracks can be reopened quickly whilst reducing labour requirements and costs. Today, precast concrete is considered to be the best performing and preferred material for railway sleepers, due to the following factors: long-term durability; improved geometric retention of track and greater weight vital for high-speed and heavy freight lines; improved elasticity of track; improved ride quality; low first cost; minimum life cycle cost; low cost of maintenance; environmental friendliness - no chemical treatment required and can be recycled. As all aspects of precast concrete railway track systems, from design through manufacture to installation and maintenance, have progressed since the publication of the FIP report, an update was considered timely, in order to provide a synthesis of currently available information. This new edition covers quality, design, production, durability, maintenance and environmental considerations, and includes survey on the use of precast concrete track systems in over 30 countries.



Precast Concrete Buildings In Seismic Areas


Precast Concrete Buildings In Seismic Areas
DOWNLOAD
Author : FIB – Féd. Int. du Béton
language : en
Publisher: FIB - Féd. Int. du Béton
Release Date : 2016

Precast Concrete Buildings In Seismic Areas written by FIB – Féd. Int. du Béton and has been published by FIB - Féd. Int. du Béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Technology & Engineering categories.


This document has a broad scope and is not focussed on design issues. Precast construction under seismic conditions is treated as a whole. The main principles of seismic design of different structural systems, their behavior and their construction techniques are presented through rules, construction steps and sequences, procedures, and details that should lead to precast structures built in seismic areas complying with the fundamental performance requirements of collapse prevention and life safety in major earthquakes and limited damage in more frequent earthquakes. The content of this document is largely limited to conventional precast construction and, although some information is provided on the well-known “PRESSS technology” (jointed ductile dry connections), this latter solution is not treated in detail in this document. The general overview, contained in this document, of alternative structural systems and connection solutions available to achieve desired performance levels, intends to provide engineers, architects, clients, and end-users (in general) with a better appreciation of the wide range of applications that modern precast concrete technology can have in various types of construction from industrial to commercial as well as residential. Lastly, the emphasis on practical aspects, from conceptual design to connection detailing, aims to help engineers to move away from the habit of blindly following prescriptive codes in their design, but instead go back to basic principles, in order to achieve a more robust understanding, and thus control, of the seismic behaviour of the structural system as a whole, as well as of its components and individual connections.



Acceptance Of Stay Cable Systems Using Prestressing Steels


Acceptance Of Stay Cable Systems Using Prestressing Steels
DOWNLOAD
Author : FIB – International Federation for Structural Concrete
language : en
Publisher: FIB - International Federation for Structural Concrete
Release Date : 2019-03-01

Acceptance Of Stay Cable Systems Using Prestressing Steels written by FIB – International Federation for Structural Concrete and has been published by FIB - International Federation for Structural Concrete this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-01 with Technology & Engineering categories.


Cable-stayed structures have become increasingly popular over the last 30 years and have been used in all parts of the world. Modern cable-stayed bridges have a history of over 50-years and have been constructed with span lengths ranging from 15 m to over 1000 m. Many long span cable-stayed bridges have been built for railway and highway traffic applications. Stay cables have also been used on pedestrian structures, many of which are architecturally striking and have become landmark structures. There is growing use in building structures, particularly for cable-supported roofs. Most of the cable supported structures have been in the form of cable-stayed bridges; but in recent years, extradosed bridges have seen increased popularity among the designers. Led by the experience in Japan, more than 200 extradosed bridges have been constructed worldwide in the past 15 years. The first edition of these fib recommendations was published as fib Bulletin 30 in 2005 and was the first specification published by fib for stay cable systems. This new bulletin has been updated based on Bulletin 30 with the aim to reflect the current state of the art and encompass the latest knowledge in cable systems. In addition, it has been the aspiration of Commission 5 and Task Group 5.5 to harmonize the guidance in this updated bulletin with other stay cable recommendations from around the world, including those from Europe, Japan and the USA. This new bulletin is intended to supersede and replace fib Bulletin 30. It is recommended that it be used in lieu of fib Bulletin 30 for all future cable supported applications. The updated bulletin introduces several significant enhancements to the specifications: These recommendations are applicable to both stay cable and extradosed cable applications. In the past, there has been some debate over the boundary between cable-stayed and extradosed bridges. This bulletin presents a new continuous approach valid for both. A completely new testing requirement to assess the performance of cable systems under bending fatigue, including both anchorages and saddles, if applicable, has been added. Testing requirements for saddle systems have been reformulated. In addition to the bending fatigue test noted above, new testing procedures for stay cable saddles with isolated tensile elements are introduced. This includes tests for saddle axial fatigue, friction and tensile testing, and determination of the effective saddle friction coefficient. Expanded system qualification, including requirements for both stay cable and extradosed applications. Includes new provisions for MTE qualification and additional load transferring connection devices. Minimum number of tests is specified for each. A new in-situ damping measurement test has been added to verify the actual damping ratio of the damping devices installed. By testing on site, selected cables may be excited to vibrate without and with the damping devices so that the observed vibration behaviour can be compared to the specified value. Other revisions have been made to reflect the current state of practice: Expanded quality control testing requirements Inclusion of epoxy-coated prestressing steel as a protection layer. Previous recommendations only considered zinc coatings. Specifications for epoxy coating material are given. Requirements for stainless steel components such as pipes, caps and plates Updated guidance for designing lightning protection systems Detailed recommendations for different levels of inspection of cable systems, including: initial, routine, detailed and exceptional inspections An updated list of references, relevant standards, and extended literature