Differential Equations And Group Methods For Scientists And Engineers

DOWNLOAD
Download Differential Equations And Group Methods For Scientists And Engineers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Equations And Group Methods For Scientists And Engineers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Differential Equations And Group Methods For Scientists And Engineers
DOWNLOAD
Author : James M. Hill
language : en
Publisher: CRC Press
Release Date : 1992-03-17
Differential Equations And Group Methods For Scientists And Engineers written by James M. Hill and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992-03-17 with Mathematics categories.
Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.
Numerical Methods For Solving Partial Differential Equations
DOWNLOAD
Author : George F. Pinder
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-05
Numerical Methods For Solving Partial Differential Equations written by George F. Pinder and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-05 with Technology & Engineering categories.
A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.
Methods For Constructing Exact Solutions Of Partial Differential Equations
DOWNLOAD
Author : Sergey V. Meleshko
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-06-18
Methods For Constructing Exact Solutions Of Partial Differential Equations written by Sergey V. Meleshko and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-18 with Technology & Engineering categories.
Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
Handbook Of Ordinary Differential Equations
DOWNLOAD
Author : Andrei D. Polyanin
language : en
Publisher: CRC Press
Release Date : 2017-11-15
Handbook Of Ordinary Differential Equations written by Andrei D. Polyanin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-15 with Mathematics categories.
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.
Handbook Of Linear Partial Differential Equations For Engineers And Scientists
DOWNLOAD
Author : Andrei D. Polyanin
language : en
Publisher: CRC Press
Release Date : 2001-11-28
Handbook Of Linear Partial Differential Equations For Engineers And Scientists written by Andrei D. Polyanin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-11-28 with Mathematics categories.
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with
Partial Differential Equations And Group Theory
DOWNLOAD
Author : J.F. Pommaret
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Partial Differential Equations And Group Theory written by J.F. Pommaret and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.
Journal Of Nonlinear Mathematical Physics
DOWNLOAD
Author :
language : en
Publisher: atlantis press
Release Date :
Journal Of Nonlinear Mathematical Physics written by and has been published by atlantis press this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Mathematical Tools For Physicists
DOWNLOAD
Author : Michael Grinfeld
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-12
Mathematical Tools For Physicists written by Michael Grinfeld and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-12 with Science categories.
The new edition is significantly updated and expanded. This unique collection of review articles, ranging from fundamental concepts up to latest applications, contains individual contributions written by renowned experts in the relevant fields. Much attention is paid to ensuring fast access to the information, with each carefully reviewed article featuring cross-referencing, references to the most relevant publications in the field, and suggestions for further reading, both introductory as well as more specialized. While the chapters on group theory, integral transforms, Monte Carlo methods, numerical analysis, perturbation theory, and special functions are thoroughly rewritten, completely new content includes sections on commutative algebra, computational algebraic topology, differential geometry, dynamical systems, functional analysis, graph and network theory, PDEs of mathematical physics, probability theory, stochastic differential equations, and variational methods.
Modern Group Analysis Advanced Analytical And Computational Methods In Mathematical Physics
DOWNLOAD
Author : N.H. Ibragimov
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-27
Modern Group Analysis Advanced Analytical And Computational Methods In Mathematical Physics written by N.H. Ibragimov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-27 with Mathematics categories.
On the occasion of the 150th anniversary of Sophus Lie, an International Work shop "Modern Group Analysis: advanced analytical and computational methods in mathematical physics" has been organized in Acireale (Catania, Sicily, October 27 31, 1992). The Workshop was aimed to enlighten the present state ofthis rapidly expanding branch of applied mathematics. Main topics of the Conference were: • classical Lie groups applied for constructing invariant solutions and conservation laws; • conditional (partial) symmetries; • Backlund transformations; • approximate symmetries; • group analysis of finite-difference equations; • problems of group classification; • software packages in group analysis. The success of the Workshop was due to the participation of many experts in Group Analysis from different countries. This book consists of selected papers presented at the Workshop. We would like to thank the Scientific Committee for the generous support of recommending invited lectures and selecting the papers for this volume, as well as the members of the Organizing Committee for their help. The Workshop was made possible by the financial support of several sponsors that are listed below. It is also a pleasure to thank our colleague Enrico Gregorio for his invaluable help of this volume.
Applications Of Analytic And Geometric Methods To Nonlinear Differential Equations
DOWNLOAD
Author : P.A. Clarkson
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Applications Of Analytic And Geometric Methods To Nonlinear Differential Equations written by P.A. Clarkson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains severalarticles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.