[PDF] Numerical Methods For Solving Partial Differential Equations - eBooks Review

Numerical Methods For Solving Partial Differential Equations


Numerical Methods For Solving Partial Differential Equations
DOWNLOAD

Download Numerical Methods For Solving Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Solving Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Numerical Methods For Solving Partial Differential Equations


Numerical Methods For Solving Partial Differential Equations
DOWNLOAD
Author : George F. Pinder
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-05

Numerical Methods For Solving Partial Differential Equations written by George F. Pinder and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-05 with Technology & Engineering categories.


A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.



Partial Differential Equations With Numerical Methods


Partial Differential Equations With Numerical Methods
DOWNLOAD
Author : Stig Larsson
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-05

Partial Differential Equations With Numerical Methods written by Stig Larsson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-05 with Mathematics categories.


The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.



Analytic Methods For Partial Differential Equations


Analytic Methods For Partial Differential Equations
DOWNLOAD
Author : G. Evans
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Analytic Methods For Partial Differential Equations written by G. Evans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.



Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Vitoriano Ruas
language : en
Publisher: John Wiley & Sons
Release Date : 2016-04-28

Numerical Methods For Partial Differential Equations written by Vitoriano Ruas and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-28 with Technology & Engineering categories.


Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.



Partial Differential Equations


Partial Differential Equations
DOWNLOAD
Author : Mark S. Gockenbach
language : en
Publisher: SIAM
Release Date : 2005-01-01

Partial Differential Equations written by Mark S. Gockenbach and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-01 with Mathematics categories.


Partial differential equations (PDEs) are essential for modeling many physical phenomena. This undergraduate textbook introduces students to the topic with a unique approach that emphasizes the modern finite element method alongside the classical method of Fourier analysis.



Numerical Methods For Nonlinear Partial Differential Equations


Numerical Methods For Nonlinear Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2015-01-19

Numerical Methods For Nonlinear Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-19 with Mathematics categories.


The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.



Numerical Solutions Of Partial Differential Equations


Numerical Solutions Of Partial Differential Equations
DOWNLOAD
Author : Silvia Bertoluzza
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-10

Numerical Solutions Of Partial Differential Equations written by Silvia Bertoluzza and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Mathematics categories.


This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.



Numerical Solution Of Partial Differential Equations In Science And Engineering


Numerical Solution Of Partial Differential Equations In Science And Engineering
DOWNLOAD
Author : Leon Lapidus
language : en
Publisher: John Wiley & Sons
Release Date : 2011-02-14

Numerical Solution Of Partial Differential Equations In Science And Engineering written by Leon Lapidus and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-14 with Mathematics categories.


From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.



The Numerical Solution Of Ordinary And Partial Differential Equations


The Numerical Solution Of Ordinary And Partial Differential Equations
DOWNLOAD
Author : Granville Sewell
language : en
Publisher: Academic Press
Release Date : 2014-05-10

The Numerical Solution Of Ordinary And Partial Differential Equations written by Granville Sewell and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.


The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.



Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Sandip Mazumder
language : en
Publisher: Academic Press
Release Date : 2015-12-01

Numerical Methods For Partial Differential Equations written by Sandip Mazumder and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-01 with Mathematics categories.


Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives