Domain Adaptation In Computer Vision Applications

DOWNLOAD
Download Domain Adaptation In Computer Vision Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Domain Adaptation In Computer Vision Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Domain Adaptation In Computer Vision With Deep Learning
DOWNLOAD
Author : Hemanth Venkateswara
language : en
Publisher: Springer Nature
Release Date : 2020-08-18
Domain Adaptation In Computer Vision With Deep Learning written by Hemanth Venkateswara and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Computers categories.
This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.
Domain Adaptation In Computer Vision Applications
DOWNLOAD
Author : Gabriela Csurka
language : en
Publisher: Springer
Release Date : 2017-09-10
Domain Adaptation In Computer Vision Applications written by Gabriela Csurka and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-10 with Computers categories.
This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning. This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.
Visual Domain Adaptation In The Deep Learning Era
DOWNLOAD
Author : Gabriela Csurka
language : en
Publisher: Springer Nature
Release Date : 2022-06-06
Visual Domain Adaptation In The Deep Learning Era written by Gabriela Csurka and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-06 with Computers categories.
Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.
Visual Object Recognition
DOWNLOAD
Author : Kristen Grauman
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2011
Visual Object Recognition written by Kristen Grauman and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions
Domain Adaptation For Vision Applications
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2014
Domain Adaptation For Vision Applications written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.
Computer Vision Eccv 2010
DOWNLOAD
Author : Kostas Daniilidis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-30
Computer Vision Eccv 2010 written by Kostas Daniilidis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-30 with Computers categories.
The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.
Emerging Topics In Computer Vision And Its Applications
DOWNLOAD
Author : C. H. Chen
language : en
Publisher: World Scientific
Release Date : 2012
Emerging Topics In Computer Vision And Its Applications written by C. H. Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
This book gives a comprehensive overview of the most advanced theories, methodologies and applications in computer vision. Particularly, it gives an extensive coverage of 3D and robotic vision problems. Example chapters featured are Fourier methods for 3D surface modeling and analysis, use of constraints for calibration-free 3D Euclidean reconstruction, novel photogeometric methods for capturing static and dynamic objects, performance evaluation of robot localization methods in outdoor terrains, integrating 3D vision with force/tactile sensors, tracking via in-floor sensing, self-calibration of camera networks, etc. Some unique applications of computer vision in marine fishery, biomedical issues, driver assistance, are also highlighted.
Computer Vision Eccv 2024
DOWNLOAD
Author : Aleš Leonardis
language : en
Publisher: Springer Nature
Release Date : 2024-10-31
Computer Vision Eccv 2024 written by Aleš Leonardis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-31 with Computers categories.
The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024. The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
Computer Vision Pattern Recognition Image Processing And Graphics
DOWNLOAD
Author : R. Venkatesh Babu
language : en
Publisher: Springer Nature
Release Date : 2020-11-16
Computer Vision Pattern Recognition Image Processing And Graphics written by R. Venkatesh Babu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-16 with Computers categories.
This book constitutes the refereed proceedings of the 7th National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics, NCVPRIPG 2019, held in Hubballi, India, in December 2019. The 55 revised full papers 3 short papers presented in this volume were carefully reviewed and selected from 210 submissions. The papers are organized in topical sections on vision and geometry, learning and vision, image processing and document analysis, detection and recognition.
Transfer Learning
DOWNLOAD
Author : Qiang Yang
language : en
Publisher: Cambridge University Press
Release Date : 2020-02-13
Transfer Learning written by Qiang Yang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-13 with Computers categories.
This in-depth tutorial for students, researchers, and developers covers foundations, plus applications ranging from search to multimedia.