Domain Adaptation In Computer Vision With Deep Learning

DOWNLOAD
Download Domain Adaptation In Computer Vision With Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Domain Adaptation In Computer Vision With Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Domain Adaptation In Computer Vision With Deep Learning
DOWNLOAD
Author : Hemanth Venkateswara
language : en
Publisher: Springer Nature
Release Date : 2020-08-18
Domain Adaptation In Computer Vision With Deep Learning written by Hemanth Venkateswara and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Computers categories.
This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.
Domain Adaptation In Computer Vision Applications
DOWNLOAD
Author : Gabriela Csurka
language : en
Publisher: Springer
Release Date : 2018-05-17
Domain Adaptation In Computer Vision Applications written by Gabriela Csurka and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-17 with Computers categories.
This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning. This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.
Visual Domain Adaptation In The Deep Learning Era
DOWNLOAD
Author : Gabriela Csurka
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2022-04-05
Visual Domain Adaptation In The Deep Learning Era written by Gabriela Csurka and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-05 with Computers categories.
Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance/b>. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.
Domain Adaptation And Representation Transfer And Distributed And Collaborative Learning
DOWNLOAD
Author : Shadi Albarqouni
language : en
Publisher: Springer
Release Date : 2020-09-26
Domain Adaptation And Representation Transfer And Distributed And Collaborative Learning written by Shadi Albarqouni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-26 with Computers categories.
This book constitutes the refereed proceedings of the Second MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the First MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with MICCAI 2020 in October 2020. The conference was planned to take place in Lima, Peru, but changed to an online format due to the Coronavirus pandemic. For DART 2020, 12 full papers were accepted from 18 submissions. They deal with methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical settings by making them robust and consistent across different domains. For DCL 2020, the 8 papers included in this book were accepted from a total of 12 submissions. They focus on the comparison, evaluation and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases; where information privacy is a priority; where it is necessary to deliver strong guarantees on the amount and nature of private information that may be revealed by the model as a result of training; and where it's necessary to orchestrate, manage and direct clusters of nodes participating in the same learning task.
Domain Adaptation In Computer Vision Applications
DOWNLOAD
Author : Gabriela Csurka
language : en
Publisher: Springer
Release Date : 2017-09-10
Domain Adaptation In Computer Vision Applications written by Gabriela Csurka and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-10 with Computers categories.
This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning. This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.
Visual Domain Adaptation In The Deep Learning Era
DOWNLOAD
Author : Gabriela Csurka
language : en
Publisher: Springer Nature
Release Date : 2022-06-06
Visual Domain Adaptation In The Deep Learning Era written by Gabriela Csurka and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-06 with Computers categories.
Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.
Dataset Shift In Machine Learning
DOWNLOAD
Author : Joaquin Quinonero-Candela
language : en
Publisher: MIT Press
Release Date : 2022-06-07
Dataset Shift In Machine Learning written by Joaquin Quinonero-Candela and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-07 with Computers categories.
An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors: Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama
Transfer Learning
DOWNLOAD
Author : Qiang Yang
language : en
Publisher: Cambridge University Press
Release Date : 2020-02-13
Transfer Learning written by Qiang Yang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-13 with Computers categories.
This in-depth tutorial for students, researchers, and developers covers foundations, plus applications ranging from search to multimedia.
Visual Object Recognition
DOWNLOAD
Author : Kristen Grauman
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Visual Object Recognition written by Kristen Grauman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions
Computer Vision Eccv 2010
DOWNLOAD
Author : Kostas Daniilidis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-30
Computer Vision Eccv 2010 written by Kostas Daniilidis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-30 with Computers categories.
The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.