Dynamical Zeta Functions For Piecewise Monotone Maps Of The Interval

DOWNLOAD
Download Dynamical Zeta Functions For Piecewise Monotone Maps Of The Interval PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamical Zeta Functions For Piecewise Monotone Maps Of The Interval book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Dynamical Zeta Functions For Piecewise Monotone Maps Of The Interval
DOWNLOAD
Author : David Ruelle
language : en
Publisher: American Mathematical Soc.
Release Date : 1994
Dynamical Zeta Functions For Piecewise Monotone Maps Of The Interval written by David Ruelle and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Mathematics categories.
With a general introduction to the subject, this title presents a detailed study of the zeta functions associated with piecewise monotone maps of the interval $ 0,1]$. In particular, it gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator.
Classical Nonintegrability Quantum Chaos
DOWNLOAD
Author : Andreas Knauf
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Classical Nonintegrability Quantum Chaos written by Andreas Knauf and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
Our DMV Seminar on 'Classical Nonintegrability, Quantum Chaos' intended to introduce students and beginning researchers to the techniques applied in nonin tegrable classical and quantum dynamics. Several of these lectures are collected in this volume. The basic phenomenon of nonlinear dynamics is mixing in phase space, lead ing to a positive dynamical entropy and a loss of information about the initial state. The nonlinear motion in phase space gives rise to a linear action on phase space functions which in the case of iterated maps is given by a so-called transfer operator. Good mixing rates lead to a spectral gap for this operator. Similar to the use made of the Riemann zeta function in the investigation of the prime numbers, dynamical zeta functions are now being applied in nonlinear dynamics. In Chapter 2 V. Baladi first introduces dynamical zeta functions and transfer operators, illustrating and motivating these notions with a simple one-dimensional dynamical system. Then she presents a commented list of useful references, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A. Knauf deal with solutions of the Hamilton and the Schr6dinger equation. Scatter ing by a potential force tends to be irregular if three or more scattering centres are present, and a typical phenomenon is the occurrence of a Cantor set of bounded orbits. The presence of this set influences those scattering orbits which come close.
Positive Transfer Operators And Decay Of Correlations
DOWNLOAD
Author : Viviane Baladi
language : en
Publisher: World Scientific
Release Date : 2000-07-12
Positive Transfer Operators And Decay Of Correlations written by Viviane Baladi and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-07-12 with Science categories.
Although individual orbits of chaotic dynamical systems are by definition unpredictable, the average behavior of typical trajectories can often be given a precise statistical description. Indeed, there often exist ergodic invariant measures with special additional features. For a given invariant measure, and a class of observables, the correlation functions tell whether (and how fast) the system “mixes”, i.e. “forgets” its initial conditions.This book, addressed to mathematicians and mathematical (or mathematically inclined) physicists, shows how the powerful technology of transfer operators, imported from statistical physics, has been used recently to construct relevant invariant measures, and to study the speed of decay of their correlation functions, for many chaotic systems. Links with dynamical zeta functions are explained.The book is intended for graduate students or researchers entering the field, and the technical prerequisites have been kept to a minimum.
Real And Complex Dynamical Systems
DOWNLOAD
Author : B. Branner
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Real And Complex Dynamical Systems written by B. Branner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.
Spectral Problems In Geometry And Arithmetic
DOWNLOAD
Author : Thomas Branson
language : en
Publisher: American Mathematical Soc.
Release Date : 1999
Spectral Problems In Geometry And Arithmetic written by Thomas Branson and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Mathematics categories.
These are the proceedings of the NSF-CBMS Conference on "Spectral Problems in Geometry and Arithmetic" held at the University of Iowa. The principal speaker was Peter Sarnak, who has been a central contributor to developments in this field. The volume approaches the topic from the geometric, physical, and number theoretic points of view. The remarkable new connections among seemingly disparate mathematical and scientific disciplines have surprised even veterans of the physical mathematics renaissance forged by gauge theory in the 1970s. Numerical experiments show that the local spacing between zeros of the Riemann zeta function is modelled by spectral phenomena: the eigenvalue distributions of random matrix theory, in particular the Gaussian unitary ensemble (GUE). Related phenomena are from the point of view of differential geometry and global harmonic analysis. Elliptic operators on manifolds have (through zeta function regularization) functional determinants, which are related to functional integrals in quantum theory. The search for critical points of this determinant brings about extremely subtle and delicate sharp inequalities of exponential type. This indicates that zeta functions are spectral objects-and even physical objects. This volume demonstrates that zeta functions are also dynamic, chaotic, and more.
Ergodic Theory Analysis And Efficient Simulation Of Dynamical Systems
DOWNLOAD
Author : Bernold Fiedler
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Ergodic Theory Analysis And Efficient Simulation Of Dynamical Systems written by Bernold Fiedler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book summarizes and highlights progress in our understanding of Dy namical Systems during six years of the German Priority Research Program "Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems" . The program was funded by the Deutsche Forschungsgemeinschaft (DFG) and aimed at combining, focussing, and enhancing research efforts of active groups in the field by cooperation on a federal level. The surveys in the book are addressed to experts and non-experts in the mathematical community alike. In addition they intend to convey the significance of the results for applications far into the neighboring disciplines of Science. Three fundamental topics in Dynamical Systems are at the core of our research effort: behavior for large time dimension measure, and chaos Each of these topics is, of course, a highly complex problem area in itself and does not fit naturally into the deplorably traditional confines of any of the disciplines of ergodic theory, analysis, or numerical analysis alone. The necessity of mathematical cooperation between these three disciplines is quite obvious when facing the formidahle task of establishing a bidirectional transfer which bridges the gap between deep, detailed theoretical insight and relevant, specific applications. Both analysis and numerical analysis playa key role when it comes to huilding that bridge. Some steps of our joint bridging efforts are collected in this volume. Neither our approach nor the presentations in this volume are monolithic.
Smooth Ergodic Theory And Its Applications
DOWNLOAD
Author : A. B. Katok
language : en
Publisher: American Mathematical Soc.
Release Date : 2001
Smooth Ergodic Theory And Its Applications written by A. B. Katok and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.
Zeta Functions Of Graphs
DOWNLOAD
Author : Audrey Terras
language : en
Publisher: Cambridge University Press
Release Date : 2010-11-18
Zeta Functions Of Graphs written by Audrey Terras and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-18 with Mathematics categories.
Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.
Higher Regulators Algebraic K Theory And Zeta Functions Of Elliptic Curves
DOWNLOAD
Author : Spencer J. Bloch
language : en
Publisher: American Mathematical Soc.
Release Date : 2011
Higher Regulators Algebraic K Theory And Zeta Functions Of Elliptic Curves written by Spencer J. Bloch and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.
This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).
On The Theory Of Maass Wave Forms
DOWNLOAD
Author : Tobias Mühlenbruch
language : en
Publisher: Springer Nature
Release Date : 2020-05-06
On The Theory Of Maass Wave Forms written by Tobias Mühlenbruch and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-06 with Mathematics categories.
This textbook provides a rigorous analytical treatment of the theory of Maass wave forms. Readers will find this unified presentation invaluable, as it treats Maass wave forms as the central area of interest. Subjects at the cutting edge of research are explored in depth, such as Maass wave forms of real weight and the cohomology attached to Maass wave forms and transfer operators. Because Maass wave forms are given a deep exploration, this book offers an indispensable resource for those entering the field. Early chapters present a brief introduction to the theory of classical modular forms, with an emphasis on objects and results necessary to fully understand later material. Chapters 4 and 5 contain the book’s main focus: L-functions and period functions associated with families of Maass wave forms. Other topics include Maass wave forms of real weight, Maass cusp forms, and weak harmonic Maass wave forms. Engaging exercises appear throughout the book, with solutions available online. On the Theory of Maass Wave Forms is ideal for graduate students and researchers entering the area. Readers in mathematical physics and other related disciplines will find this a useful reference as well. Knowledge of complex analysis, real analysis, and abstract algebra is required.