Efficient Numerical Methods For Elliptic And Parabolic Partial Differential Equations

DOWNLOAD
Download Efficient Numerical Methods For Elliptic And Parabolic Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Efficient Numerical Methods For Elliptic And Parabolic Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Efficient Numerical Methods For Elliptic And Parabolic Partial Differential Equations
DOWNLOAD
Author : Kovács Balázs
language : en
Publisher:
Release Date : 2015
Efficient Numerical Methods For Elliptic And Parabolic Partial Differential Equations written by Kovács Balázs and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.
Numerical Methods For Elliptic And Parabolic Partial Differential Equations
DOWNLOAD
Author : Peter Knabner
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-06-26
Numerical Methods For Elliptic And Parabolic Partial Differential Equations written by Peter Knabner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-26 with Mathematics categories.
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Numerical Solution Of Elliptic And Parabolic Partial Differential Equations With Cd Rom
DOWNLOAD
Author : John A. Trangenstein
language : en
Publisher: Cambridge University Press
Release Date : 2013-04-18
Numerical Solution Of Elliptic And Parabolic Partial Differential Equations With Cd Rom written by John A. Trangenstein and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-18 with Mathematics categories.
For mathematicians and engineers interested in applying numerical methods to physical problems this book is ideal. Numerical ideas are connected to accompanying software, which is also available online. By seeing the complete description of the methods in both theory and implementation, students will more easily gain the knowledge needed to write their own application programs or develop new theory. The book contains careful development of the mathematical tools needed for analysis of the numerical methods, including elliptic regularity theory and approximation theory. Variational crimes, due to quadrature, coordinate mappings, domain approximation and boundary conditions, are analyzed. The claims are stated with full statement of the assumptions and conclusions, and use subscripted constants which can be traced back to the origination (particularly in the electronic version, which can be found on the accompanying CD-ROM).
Analytic Methods For Partial Differential Equations
DOWNLOAD
Author : G. Evans
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Analytic Methods For Partial Differential Equations written by G. Evans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.
Petsc For Partial Differential Equations Numerical Solutions In C And Python
DOWNLOAD
Author : Ed Bueler
language : en
Publisher: SIAM
Release Date : 2020-10-22
Petsc For Partial Differential Equations Numerical Solutions In C And Python written by Ed Bueler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Partial Differential Equations With Numerical Methods
DOWNLOAD
Author : Stig Larsson
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-05
Partial Differential Equations With Numerical Methods written by Stig Larsson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-05 with Mathematics categories.
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Numerical Partial Differential Equations Finite Difference Methods
DOWNLOAD
Author : J.W. Thomas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Numerical Partial Differential Equations Finite Difference Methods written by J.W. Thomas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
This text will be divided into two books which cover the topic of numerical partial differential equations. Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student, this text offers a means of coming out of a course with a large number of methods which provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.
Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23
Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Numerical Partial Differential Equations For Environmental Scientists And Engineers
DOWNLOAD
Author : Daniel R. Lynch
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-12-15
Numerical Partial Differential Equations For Environmental Scientists And Engineers written by Daniel R. Lynch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-15 with Science categories.
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.
Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-01-01
Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.